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Moduli spaces of algebras

The Moduli Space of K-algebras of a fixed dimension n is the set
of algebra structures on V = Kn modulo the action of the group
GL(V ).

Since the set of algebra structures on V is cut out by a set of
quadratic equations, it is already an algebraic variety, so the
structure of the moduli space of algebras is complicated.

With Michael Penkava we have studied moduli spaces of low
dimensional complex Lie, super, differential graded and L∞
algebras, including Z2-graded algebras.

In every one of these cases, the moduli space decomposes into very
simple strata, consisting of projective orbifolds of the form Pn/G ,
where G is a subgroup of the symmetric group Σn+1, which acts
on Pn by permuting the projective coordinates.



Orbifold structure, stratification, deformations

I Orbifold structure: locally looks like the quotient space under
the linear action of a finite group.

I Stratification: decomposition of a space into disjoint subsets
which gives a partition of the space. It is useful when each
strata are defined by some recognisable set of conditions and
fit together manageably.

I Jump deformation: if there exists a 1-parameter family of
deformations of the Lie algebra structure s.t. every nonzero
value of the parameter determines the same deformed Lie
algebra, which is not the original one.

I Smooth deformations: they move along the family, meaning
that the Lie algebra structure is different for each value of the
parameter.



The structure of the moduli space

I Complex projective spaces with the possible action of the
symmetric group, and some exceptional points. The orbifold
points, which are fixed by some element in the acting group,
are special.

I The moduli space is glued together by deformations, which
determine the elements that one may deform to locally. The
exceptional points play a role in refining the picture of how
this space is glued together.

I The different strata are connected by jump deformations.



L∞ algebras

I strongly homotopy or sh Lie algebras - natural generalizations
of Lie algebras, Lie superalgebras, and differential graded Lie
algebras from a homotopy point of view.

I V : Z- or Z2-graded vectorspace;
L∞ algebra on V : collection of n-ary multilinear maps
- graded skew-symmetric
- satisfy the generalized Jacobi identities, are fully
characterized by their Chevally-Eilenberg differential graded
algebras. The Jacobi identity is allowed to hold up to higher
coherent homotopy.

I If V = ⊕Vi , i ∈ Z,Vi = 0 for every i 6= 0, Jacobi identity, so
they are the Lie algebras.



Conjecture

This type of decomposition happens for all such moduli spaces of
finite dimensional Lie, super, L∞ and associative algebras over C.

I In this talk I will demonstrate the picture in 3 and 4
dimensional Lie algebras, and give an explicit construction of
a stratification of part of the moduli space of Lie algebras of a
given dimension in exactly this form, which holds in any finite
dimensional space.



A simple example, 3-d Lie algebras

I Classical decomposition of moduli space of complex 3-d Lie
algebras known since at least Jacobson (1962).

I A new stratification of the space.
Later a complete projective picture of the moduli space, using
cohomology and deformation computations.

I Final picture is the following. There are three strata,
d2 = r3(C), d2(p : q), parametrized by P1/Σ2, and
d3 = sl(2,C).

I We got this picture by computing cohomology and
deformations.



Comparison of Classical Decomposition and Ours
I Complex Lie algebras except for sl(2,C) are determined by

equivalence classes of 2× 2-matrices under similarity and up
to multiplication by a nonzero constant. Thus Jordan
decomposition is important.

I The classical picture decomposes these matrices as follows:
name r2(C)⊕ C r3(λ) r3(C) n3

[ 1 0
0 0 ]

[
1 0
0 λ

]
[ 1 1

0 1 ] [ 0 1
0 0 ]

I Our picture decomposes these matrices as follows:
name d2(p : q) d3[

p 1
0 q

]
[ 1 0

0 1 ]

I For most cases, we have r3(λ) = d2(p : q) where λ = p/q.
The major difference is that we exchange the elements r3(C)
and r3(1), that is, we switch which element belongs to the
family!

It turns out that the switch above is necessary in order for the
decomposition of the strata to be consistent with cohomology and
deformations. Moreover, n3 = d2(0 : 0).



Geometric picture

I d2(1 : 1) is r3(C) in the classical notation.

I The nilpotent algebra n3 sits inside the solvable family with
parameters (0 : 0).

I The orbifold points of the projective family are (1 : 1) and
(1 : −1). At d2(1 : 1) there is a doppenganger d2 = r3(1)
whose neighborhoods coincide with those of the points
d2(1 : 1) and which also deforms infinitesimally into d2(1 : 1).
At d2(1 : −1) there is a deformation in the d3 direction as
well, as a deformation in the direction of the family.

I d3 is r3(1), which is the simple Lie algebra sl(2,C).

I r2(C)⊕ C is just d2(1 : 0).

I the members of the projective family d2(p, q) deform
smoothly along the family.

I d2(0 : 0) has deformations everywhere except to d2.



Higher Dimensional Generalizations
For 3-dimensional Lie algebras, we have d2(p : q) depends on the
coordinates (p : q) projectively. Moreover d2(p : q) ∼ d2(q : p),
meaning that the stratum is parameterized by P1/Σ2. This
stratification corresponds to the classical observation that
r3(λ) ∼ r3(1/λ).

I The pattern observed for 3-dimensional algebras replicates
itself in higher dimensions.

I For the moduli space of n + 1-dimensional complex Lie
algebras we have a portion of the moduli space which is
classified by similarity classes of n × n matrices up to
multiplication of the diagonal elements by a nonzero constant.

I For the moduli space of 4-dimensional complex Lie algebras,
the strata given by extending a 1-d trivial algebra by a 3-d
trivial one are:

name d5(p : q : r) d6(p : q) d7[
p 1 0
0 q 1
0 0 r

] [
p 0 0
0 p 1
0 0 q

] [
1 0 0
0 1 0
0 0 1

]



The Moduli Space of 4-d Lie Algebras I

I The singleton d7 could be considered as the nontrivial element

in the space d7(p) given by the matrix

[
p 0 0
0 p 0
0 0 p

]
, which is

parametrized by P0. Of course, this space has only 2
elements, and the element d7(0) is just the trivial algebra.

I d6(p : q) is parametrized by P1, without any action of the
symmetric group.

I d5(p : q : r) is parametrized by P2/Σ3.

I The deformations of these algebras within this group of
algebras can be read from the matrices.

I Each matrix corresponds to a partition of the number 3. Thus
d5(p : q : r) corresponds to [1, 1, 1], d5(p : q) corresponds to
[2, 1, 0] and d7(p) corresponds to [3, 0, 0]. The number of
distinct strata is the number of partitions of 3.



Moduli space of 4-d Lie Algebras II

I So the part of the moduli space given by extending a 1-d
trivial algebra by a 3-d trivial one are described by those three
types of matrices, up to scaling the diagonal elements.

I What about other strata? There are algebras which arise as
extensions of the trivial 1-dimensional algebra by the only
nontrivial nilpotent 3-d algebra n3. The matrices representing
the module structure on these algebras give another projective
family of Lie algebras and a singleton algebra.

I Adding 2 more singletons coming from direct sums, altogether
we have 3 projective families and 4 singletons.



5-dimensional Lie algebras

I Similarity types in dimension 4 give 5 dimensional Lie algebras:
d20 d21 d22 d23 d24[ p 1 0 0

0 q 1 0
0 0 r 1
0 0 0 s

] [
p 0 0 0
0 p 1 0
0 0 q 1
0 0 0 r

] [
p 1 0 0
0 q 0 0
0 0 p 1
0 0 0 q

] [
p 0 0 0
0 p 0 0
0 0 p 1
0 0 0 q

] [
p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

]

I The first stratum d20(p : q : r : s) is parametrized by P3/Σ4.

I The second stratum d21(p : q : r) is parametrized by P2/Σ2,
where Σ2 acts by permuting the coordinates q and r .

I The third stratum d22(p : q) is parametrized by P1/Σ2.

I The fourth stratum d23(p : q) is parametrized by P1.

I The fifth stratum d24(p) is parametrized by P0.



General Picture of this Stratum

It is easy to write down a matrix corresponding to a partition of n
which represents a certain n + 1-dimensional Lie algebra.
Consider a multiindex of the form [m1, ...,mn], m1 + · · ·+ mn = n,
mi ≥ mi+1 ≥ 0.. Then each such multiindex determines a stratum.
First, consider the case m1 > m2. Then the matrix should have
m1 −m2 columns with only a p1 on the main diagonal. For the
(m1 −m2 + 1)-th row, there will be a 1 to the right of the entry
p1. Next, suppose that m2 = m3 = ...mk > mk+1. Then there will
be mk −mk+1 repetitions of the pattern where the columns have a
1 above the entry on the main diagonal except in the first column,
followed by the entries on the main diagonal given by p1, ..., pk
sequentially, repeating the pattern mk −mk+1 times. If we think
that this has reduced all the entires in the multiindex to mk+1,
then we repeat the process again, until finally we have run out of
nonzero entries in the multiindex.



Example

For example, consider the partition [3, 2, 2, 1, 0, 0, 0] of 8. The
matrix representing a certain stratum of 8-dimensional Lie algebras
is 

p1 0 0 0 0 0 0 0
0 p1 1 0 0 0 0 0
0 0 p2 1 0 0 0 0
0 0 0 p3 0 0 0 0
0 0 0 0 p1 1 0 0
0 0 0 0 0 p2 1 0
0 0 0 0 0 0 p3 1
0 0 0 0 0 0 0 p4


The stratum in the moduli space of 8-dimensional complex Lie
algebras corresponding to this matrix is parametrized by P3/Σ2,
where the action of Σ2 is by permuting the coordinates p2 and p3.



The Generic Element

I The understanding that strata of moduli space of algebras are
naturally parametrized by projective orbifolds goes back to the
early 2000s, but the idea that we needed to consider the
generic element in Pn arose later.

I One can define Pn = Cn+1/C∗, but usually, people consider
only Cn+1\0/C∗, which gives a complex manifold.

I The point (0 : · · · : 0), is known to algebraic geometers, who
give it the misleading name, the generic element, even though
it is far from generic. In fact, every nongeneric element in Pn

lies in every open neighborhood of the generic element, so
including it creates a terrible topology.

I The point d(0 : · · · : 0) in a projective family d(p1 : · · · : pn)
of algebras behaves just like its counterpoint in algebraic
geometry, meaning that this generic point has jump
deformations to every other element in the family, reflecting
somehow the idea that they are infinitesimally close to the
generic point.



More on Generic Elements
I In the 3-d complex Lie algebras d2(0 : 0) is the nilpotent

algebra n3, so the nilpotent algebra sits at the top of a family
of solvable (but not nilpotent) algebras.

I In the 4-d complex Lie algebras, d5(0 : 0 : 0) and d6(0 : 0)
represent the two nontrivial nilpotent algebras, where d7(0) is
the trivial Lie algebra.

I In the 4-d complex Lie algebras, the generic elements in the
solvable families give nilpotent algebras, but there is a
nilpotent Lie algebra which is not an element of a family.

I There is also a 4-d projective family d3(p : q) of solvable Lie
algebras which are not of the types above, arising from
extensions of the trivial lie algebra by n3. Its generic element,
d3(0 : 0), is isomorphic to d5(0 : 0 : 0).

I In general, the generic elements in two different strata can
coincide, or even that the generic element in one family is an
ordinary element in another family. These are the only
possible overlaps.



Constructing Lie Algebras by Extensions

I Any Lie algebra V which is not semisimple, arises as an
extension of an algebra W by another algebra M. In other
words, there is an exact sequence

0→ M → V →W → 0.

I If V is not solvable, then there is a Levi decomposition, where
M is solvable and W is semisimple, and in characteristic 0, we
even can express V = M oW , a semidirect product.

I If V is solvable but not nilpotent, we can decompose it in the
form where M is the maximal nilpotent ideal, and W is a
trivial algebra (over C at least).

I If µ is the algebra structure on M and δ is the algebra
structure on W , then the algebra structure d on V is of the
form d = δ + µ+ λ+ ψ, where λ : M ⊗W → M is called the
module structure and ψ :

∧2(W )→ M is called the cocycle.



The Conditions for an Extension

There are three conditions necessary for a structure
d = δ + µ+ λ+ ψ to give a Lie algebra structure:

1. [µ, λ] = 0. (The compatibility condition)

2. [δ, λ] + 1
2 [λ, λ] + [µ, ψ] = 0. (The Maurer-Cartan condition)

3. [δ + λ, ψ] = 0. (The cocycle condition).

I The classical Maurer-Cartan condition is [δ, λ] + 1
2 [λ, λ] = 0.

I This holds when [µ, ψ] = 0, in particular, if µ = 0, which is
the classic construction of an extension by a module.

I When [µ, ψ] 6= 0, then λ is not really a module structure.

I When λ is a module structure, then the cocycle condition
really implies that ψ is a cocycle with respect to the Lie
algebra structure δ + λ on M ⊕W .
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