On the classification of Kantor triple systems ${ }^{1}$

Antonio Ricciardo
University of Bologna

Non-associative algebras in Cádiz 23rd February 2018

[^0]
Kantor triple systems

Definition (Jordan triple system)

A Jordan triple system (JTS) is a vector space with a ternary product commutative in the 1st and 3rd variables, i.e. $(x y z)=(z y x)$, and satisfying

$$
(u v(x y z))=((u v x) y z)-(x(v u y) z)+(x y(u v z)) \quad(*)
$$

The Kantor tensor is $K_{x z}(y)=(x y z)-(z y x)$. Commutativity in the 1st and 3rd variables is then equivalent to K being identically 0 .

Definition

A Kantor triple system (KTS) is a vector space with ternary product satisfying condition $(*)$ and such that

$$
\begin{equation*}
K_{K_{u v}(x) y}=K_{(y x u) v}-K_{(y x v) u} \tag{1}
\end{equation*}
$$

Example of KTS

Example (Special linear KTS)

The matrix space $M=M_{m, n}(\mathbb{C}) \oplus M_{r, m}(\mathbb{C})$ with product

$$
\begin{equation*}
\left(\binom{x_{1}}{x_{2}}\binom{y_{1}}{y_{2}}\binom{z_{1}}{z_{2}}\right)=\binom{x_{1} y_{1}^{t} z_{1}+z_{1} y_{1}^{t} x_{1}-y_{2}^{t} x_{2} z_{1}}{x_{2} y_{2}^{t} z_{2}+z_{2} y_{2}^{t} x_{2}-z_{2} x_{1} y_{1}^{t}} \tag{2}
\end{equation*}
$$

is a KTS. Furthermore, it is

- simple, i.e. it has no non-trivial ideals (subsystems I for which $(I M M)+(M I M)+(M M I) \subset I)$,
- centerless, i.e. $C=\{c \in M \mid(x c y)=0, \forall x, y \in M\}=0$.

Construction of KTS

Definition (Graded Lie algebras)

A Lie algebra \mathfrak{g} is \mathbb{Z}-graded if $\mathfrak{g}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ and $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$.
We say that \mathfrak{g} is 5 -graded (resp. 3-graded) if $\mathfrak{g}_{i}=0$ for $|i|>2$ (resp. $|i|>1$).
If σ is an order 2 automorphism of \mathfrak{g} we say that σ is a grade-reversing involution if $\sigma\left(\mathfrak{g}_{i}\right)=\mathfrak{g}_{-i}$.

Proposition

Let (\mathfrak{g}, σ) be a pair consisting of a 5-graded Lie algebra \mathfrak{g} and a grade-reversing involution σ. We define a KTS structure over \mathfrak{g}_{-1} by

$$
\begin{equation*}
(x y z)=[[x, \sigma(y)], z] \tag{3}
\end{equation*}
$$

Problem: Is it possible to reverse this construction?

Lie algebras and KTS

$\left\{\begin{array}{c}\text { simple } \\ \text { 5-graded Lie alg. } \\ \text { with involution }\end{array}\right\} \quad \underset{\text { TKK }}{\longleftrightarrow} \quad\left\{\begin{array}{c}\text { K-simple } \\ \text { KTS }\end{array}\right\}$

TKK construction

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$
\begin{gathered}
L_{x, y}(z):=(x y z), \quad \varphi_{x}(y):=L_{y, x}, \quad D_{x, y}(z):=-\varphi_{K_{x, y}(z)} . \\
\mathfrak{g}=\mathfrak{g}(V)=\begin{array}{ccccccc}
\left\langle K_{x, y}\right\rangle & \oplus & V & \oplus & \left\langle L_{x, y}\right\rangle & \oplus & \left\langle\varphi_{x}\right\rangle
\end{array} \oplus \begin{array}{l}
\left\langle D_{x, y}\right\rangle \\
-2
\end{array} \quad-1
\end{gathered}
$$

The Lie bracket is defined by

$$
\begin{array}{ll}
{[x, y]:=K_{x, y},} & {[A, x]:=A(x)} \\
{[x, y]:=K_{x, y},} & {[A, x]:=A(x)}
\end{array}
$$

for A either $L_{x, y}, \phi_{x}$ or $D_{x, y}$ and extended using

- transitivity (if $A \in \mathfrak{g}_{i}, i \geq 0$ and $[A, x]=0 \forall x \in \mathfrak{g}_{-1}$ then $A=0$)
- Jacobi identity, since \mathfrak{g} is fundamental $\left(\mathfrak{g}_{-1}\right.$ generates $\left.\mathfrak{g}_{-2}\right)$.

TKK construction

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$
\begin{gathered}
L_{x, y}(z):=(x y z), \quad \varphi_{x}(y):=L_{y, x}, \quad D_{x, y}(z):=-\varphi_{K_{x, y}(z)} \\
\left.\mathfrak{g}=\mathfrak{g}(V)=\begin{array}{ccccccc}
\left\langle K_{x, y}\right\rangle & \oplus & V & \oplus & \left\langle L_{x, y}\right\rangle & \oplus & \left\langle\varphi_{x}\right\rangle
\end{array}\right) \oplus \begin{array}{l}
\left\langle D_{x, y}\right\rangle \\
-2
\end{array} \quad-1
\end{gathered}
$$

Remark: $\mathfrak{g}(V)$ is a subalgebra of the Tanaka prolongation \mathfrak{g}^{∞}.
Remark: The following map is a grade-reversing involution of \mathfrak{g},

$$
\sigma: \quad K_{x, y} \leftrightarrow D_{x, y}, \quad x \leftrightarrow-\varphi_{x}, \quad L_{x, y} \leftrightarrow-L_{y, x}
$$

TKK construction

Theorem (C. , - , S.)

There is a one-to-one correspondence between K-simple Kantor triple systems V and pairs (\mathfrak{g}, σ), where \mathfrak{g} is a simple 5-graded Lie algebra and σ a grade-reversing involution. Moreover, V is finite dimensional (resp. linearly-compact) if and only if \mathfrak{g} is finite dimensional (resp. linearly-compact).

Infinite-dimensional KTS

Theorem (C. , - , S.)

There are no infinite-dimensional simple linearly-compact KTS.

Example (W(n))

The infinite-dimensional linearly-compact simple Lie algebra of formal vector fields in n indeterminates:

$$
W(n)=\left\{\left.\sum_{i=1}^{n} P_{i} \frac{\partial}{\partial x_{i}} \right\rvert\, P_{i} \in \mathbb{C} \llbracket x_{1}, \ldots, x_{n} \rrbracket\right\}
$$

Any \mathbb{Z}-grading of $W(n)$ is determined by assigning a degree

$$
\begin{equation*}
\operatorname{deg}\left(x_{i}\right)=k_{i}, \quad \operatorname{deg}\left(\frac{\partial}{\partial x_{i}}\right)=-k_{i} \tag{4}
\end{equation*}
$$

The grading obtained cannot be a 5 -grading ($\mathfrak{g}_{i} \neq 0$ for infintely-many i).

Finite-dimensional KTS

Problem: How to classify grade-reversing involutions of finite-dimensional simple 5-graded Lie algebras?

Theorem (C. , - , S.)

There is a bijection between isomorphic (\mathfrak{g}, σ) and isomorphic $\left(\mathfrak{g}^{\circ}, \theta\right)$, where \mathfrak{g} is a simple complex \mathbb{Z}-graded Lie algebra, σ a grade-reversing involution of $\mathfrak{g}, \mathfrak{g}^{\circ}$ is a real absolutely simple \mathbb{Z}-graded Lie algebra and θ a grade-reversing Cartan involution of \mathfrak{g}°.

Solution: Given a 5-graded simple Lie algebra \mathfrak{g}, each non-isomorphic KTS structure of \mathfrak{g} corresponds exactly to one of its real forms \mathfrak{g}°.

Derivations of KTS

Theorem (C. , - , S.)
Let V be a K-simple KTS with associated real form $\left(\mathfrak{g}^{\circ}, \theta\right)$. Let $\left(\mathfrak{g}_{0}^{\circ}\right)^{s s}$ be the semisimple part of \mathfrak{g}_{0}° and $\left(\mathfrak{g}_{0}^{\circ}\right)^{s s}=\mathfrak{l} \oplus \mathfrak{p}$ its Cartan decomposition with respect to θ.
The Lie algebra of derivations of V, denoted $\mathfrak{d e r}(V)$, is the complexification of the maximal compact subalgebra \mathfrak{l}

$$
\mathfrak{d e r}(V)=\mathfrak{l} \otimes \mathbb{C}
$$

Finite-dimensional KTS

Theorem (C. , - , S.)

Up to isomorphisms there are 8 infinite series of classical K-simple KTS and 23 exceptional cases.

The exceptional KTS can be divided into three classes, depending on the grading of the associated Lie algebra:
(i) of contact type, if $\operatorname{dim}\left(\mathfrak{g}_{-2}\right)=1$;
(ii) of extended Poincaré type, if $\mathfrak{g}_{-2}=U$ and $\mathfrak{g}_{0} \supset \mathfrak{s o}(U)$;
(iii) of special type otherwise.

Exceptional KTS associated to E_{7}

Contact type Poincaré type Special type

\mathfrak{g}°	Satake Diagram	KTS
$E V$		$\begin{aligned} & V=\mathbb{S}_{6}^{+} \\ & \operatorname{der}(V)=\mathfrak{s o}(6, \mathbb{C}) \oplus \mathfrak{s o}(6, \mathbb{C}) \end{aligned}$
E VI		$\begin{aligned} & V=\mathbb{S}_{6}^{+} \\ & \mathfrak{d e r}(V)=\mathfrak{g l}(6, \mathbb{C}) \end{aligned}$
E VII		$\begin{aligned} & V=\mathbb{S}_{6}^{+} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(2, \mathbb{C}) \oplus \mathfrak{s o}(10, \mathbb{C}) \end{aligned}$

Exceptional KTS associated to E_{7}

Poincaré type Special type

\mathfrak{g}°	Satake Diagram	KTS
$E V$		$\begin{aligned} & V=\mathbb{S}_{5}^{+} \otimes \mathbb{C}^{2} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(5, \mathbb{C}) \oplus \mathfrak{s o}(5, \mathbb{C}) \oplus \mathfrak{s o}(2, \mathbb{C}) \end{aligned}$
E VI		$\begin{aligned} & V=\mathbb{S}_{5}^{+} \otimes \mathbb{C}^{2} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(3, \mathbb{C}) \oplus \mathfrak{s o}(7, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C}) \end{aligned}$
E VII		$\begin{aligned} & V=\mathbb{S}_{5}^{+} \otimes \mathbb{C}^{2} \\ & \mathfrak{d e r}(V)=\mathfrak{s o}(9, \mathbb{C}) \oplus \mathfrak{s o}(2, \mathbb{C}) \end{aligned}$

Exceptional KTS associated to E_{7}

Poincaré type Special type

\mathfrak{g}°	Satake Diagram	KTS
$E V$	0	0
$E V I$	0	0
	0	0

Exceptional KTS of special type E_{7}

$$
\mathfrak{g}=\begin{array}{cccccccc}
\Lambda^{6}\left(\mathbb{C}^{7}\right)^{*} & \oplus & \Lambda^{3}\left(\mathbb{C}^{7}\right)^{*} & \oplus & \mathfrak{s l}(7, \mathbb{C}) \oplus \mathbb{C} E & \oplus & \Lambda^{3} \mathbb{C}^{7} & \oplus
\end{array} \Lambda^{6} \mathbb{C}^{7} .
$$

Let η be a scalar product on \mathbb{C}^{7} and \sharp the associated musical morphism sending $\Lambda^{k}\left(\mathbb{C}^{7}\right)^{*} \rightarrow \Lambda^{k} \mathbb{C}^{7}$.
Let \bullet be the natural projection $\Lambda^{3}\left(\mathbb{C}^{7}\right)^{*} \otimes \Lambda^{3} \mathbb{C}^{7} \rightarrow \mathfrak{s l}(7, \mathbb{C})$.

Theorem

The vector space $\Lambda^{3}\left(\mathbb{C}^{7}\right)^{*}$ with triple product

$$
\begin{equation*}
(\alpha \beta \gamma)=\frac{2}{7} \eta(\alpha, \beta) \gamma-\left(\beta^{\sharp} \bullet \alpha\right) \cdot \gamma \tag{5}
\end{equation*}
$$

is a K-simple $K T S$ with associated Lie algebra E_{7} and derivation algebra $\mathfrak{s o}(7, \mathbb{C})$.

Thanks!

[^0]: ${ }^{1}$ Based on joint work with N. Cantarini and A. Santi. https://arxiv.org/abs/1710.05375

