On the classification of Kantor triple systems¹

Antonio Ricciardo University of Bologna

Non-associative algebras in Cádiz 23rd February 2018

¹Based on joint work with *N. Cantarini* and *A. Santi*. https://arxiv.org/abs/1710.05375

Antonio Ricciardo

Classification of KTS

Kantor triple systems

Definition (Jordan triple system)

A Jordan triple system (JTS) is a vector space with a ternary product commutative in the 1st and 3rd variables, i.e. (xyz) = (zyx), and satisfying

$$(uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz))$$
 (*)

The Kantor tensor is $K_{xz}(y) = (xyz) - (zyx)$. Commutativity in the 1st and 3rd variables is then equivalent to K being identically 0.

Definition

A Kantor triple system (KTS) is a vector space with ternary product satisfying condition (*) and such that

$$\mathcal{K}_{\mathcal{K}_{uv}(x)y} = \mathcal{K}_{(yxu)v} - \mathcal{K}_{(yxv)u} \tag{1}$$

Example of KTS

Example (Special linear KTS)

The matrix space $M = M_{m,n}(\mathbb{C}) \oplus M_{r,m}(\mathbb{C})$ with product

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 y_1^t z_1 + z_1 y_1^t x_1 - y_2^t x_2 z_1 \\ x_2 y_2^t z_2 + z_2 y_2^t x_2 - z_2 x_1 y_1^t \end{pmatrix}$$
(2)

is a KTS. Furthermore, it is

- simple, i.e. it has no non-trivial ideals (subsystems / for which (IMM) + (MIM) + (MMI) ⊂ I),
- centerless, i.e. $C = \{c \in M | (xcy) = 0, \forall x, y \in M\} = 0.$

Construction of KTS

Definition (Graded Lie algebras)

A Lie algebra \mathfrak{g} is \mathbb{Z} -graded if $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ and $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$. We say that \mathfrak{g} is 5-graded (resp. 3-graded) if $\mathfrak{g}_i = 0$ for |i| > 2 (resp. |i| > 1). If σ is an order 2 automorphism of \mathfrak{g} we say that σ is a grade-reversing involution if $\sigma(\mathfrak{g}_i) = \mathfrak{g}_{-i}$.

Proposition

Let (\mathfrak{g}, σ) be a pair consisting of a 5-graded Lie algebra \mathfrak{g} and a grade-reversing involution σ . We define a KTS structure over \mathfrak{g}_{-1} by

$$(xyz) = [[x, \sigma(y)], z]$$
(3)

Problem: Is it possible to reverse this construction?

Lie algebras and KTS

$\left\{\begin{array}{c} \text{simple} \\ \text{5-graded Lie alg.} \\ \text{with involution} \end{array}\right\} \xrightarrow{} \mathcal{K} \\ \mathcal$

TKK construction

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$L_{x,y}(z) := (xyz), \quad \varphi_x(y) := L_{y,x}, \quad D_{x,y}(z) := -\varphi_{K_{x,y}(z)}.$$

$$\mathfrak{g} = \mathfrak{g}(V) = \langle K_{x,y}
angle \oplus V \oplus \langle L_{x,y}
angle \oplus \langle \varphi_x
angle \oplus \langle D_{x,y}
angle
onumber \ -2 -1 0 1 2$$

The Lie bracket is defined by

$$[x, y] := K_{x,y}, \qquad [A, x] := A(x)$$

 $[x, y] := K_{x,y}, \qquad [A, x] := A(x)$

for A either $L_{x,y}$, ϕ_x or $D_{x,y}$ and extended using

- transitivity (if $A \in \mathfrak{g}_i$, $i \ge 0$ and $[A, x] = 0 \ \forall x \in \mathfrak{g}_{-1}$ then A = 0)
- Jacobi identity, since \mathfrak{g} is fundamental (\mathfrak{g}_{-1} generates \mathfrak{g}_{-2}).

TKK construction

Let V be a centerless KTS and define the operators, for $x, y, z \in V$:

$$L_{x,y}(z) := (xyz), \quad \varphi_x(y) := L_{y,x}, \quad D_{x,y}(z) := -\varphi_{K_{x,y}(z)}.$$

$$\mathfrak{g} = \mathfrak{g}(V) = \langle K_{x,y}
angle \oplus V \oplus \langle L_{x,y}
angle \oplus \langle \varphi_x
angle \oplus \langle D_{x,y}
angle \ -2 -1 \quad 0 \quad 1 \quad 2$$

Remark: $\mathfrak{g}(V)$ is a subalgebra of the Tanaka prolongation \mathfrak{g}^{∞} .

Remark: The following map is a grade-reversing involution of \mathfrak{g} ,

$$\sigma: \qquad \mathsf{K}_{\mathsf{x},\mathsf{y}} \leftrightarrow \mathsf{D}_{\mathsf{x},\mathsf{y}} \,, \quad \mathsf{x} \leftrightarrow -\varphi_{\mathsf{x}} \,, \quad \mathsf{L}_{\mathsf{x},\mathsf{y}} \leftrightarrow -\mathsf{L}_{\mathsf{y},\mathsf{x}}$$

TKK construction

Theorem (C., -, S.)

There is a one-to-one correspondence between K-simple Kantor triple systems V and pairs (\mathfrak{g}, σ) , where \mathfrak{g} is a simple 5-graded Lie algebra and σ a grade-reversing involution. Moreover, V is finite dimensional (resp. linearly-compact) if and only if \mathfrak{g} is finite dimensional (resp. linearly-compact).

Infinite-dimensional KTS

Theorem (C., -, S.)

There are no infinite-dimensional simple linearly-compact KTS.

Example (W(n))

The infinite-dimensional linearly-compact simple Lie algebra of formal vector fields in n indeterminates:

$$W(n) = \left\{ \sum_{i=1}^{n} P_i \frac{\partial}{\partial x_i} \mid P_i \in \mathbb{C}\llbracket x_1, \ldots, x_n \rrbracket \right\}$$

Any \mathbb{Z} -grading of W(n) is determined by assigning a degree

$$deg(x_i) = k_i$$
, $deg(\frac{\partial}{\partial x_i}) = -k_i$. (4)

The grading obtained cannot be a 5-grading ($g_i \neq 0$ for infinitely-many *i*).

Finite-dimensional KTS

Problem: How to classify grade-reversing involutions of finite-dimensional simple 5-graded Lie algebras?

Theorem (C., -, S.)

There is a bijection between isomorphic (\mathfrak{g}, σ) and isomorphic $(\mathfrak{g}^{\circ}, \theta)$, where \mathfrak{g} is a simple complex \mathbb{Z} -graded Lie algebra, σ a grade-reversing involution of \mathfrak{g} , \mathfrak{g}° is a real absolutely simple \mathbb{Z} -graded Lie algebra and θ a grade-reversing Cartan involution of \mathfrak{g}° .

Solution: Given a 5-graded simple Lie algebra \mathfrak{g} , each non-isomorphic KTS structure of \mathfrak{g} corresponds exactly to one of its real forms \mathfrak{g}^{o} .

Derivations of KTS

Theorem (C., -, S.)

Let V be a K-simple KTS with associated real form (\mathfrak{g}^o, θ) . Let $(\mathfrak{g}_0^o)^{ss}$ be the semisimple part of \mathfrak{g}_0^o and $(\mathfrak{g}_0^o)^{ss} = \mathfrak{l} \oplus \mathfrak{p}$ its Cartan decomposition with respect to θ .

The Lie algebra of derivations of V, denoted $\operatorname{det}(V)$, is the complexification of the maximal compact subalgebra \mathfrak{l}

 $\mathfrak{der}(V) = \mathfrak{l} \otimes \mathbb{C}$

Finite-dimensional KTS

Theorem (C., -, S.)

Up to isomorphisms there are 8 infinite series of classical K-simple KTS and 23 exceptional cases.

The exceptional KTS can be divided into three classes, depending on the grading of the associated Lie algebra:

- (i) of contact type, if $\dim(\mathfrak{g}_{-2}) = 1$;
- (ii) of extended Poincaré type, if $\mathfrak{g}_{-2} = U$ and $\mathfrak{g}_0 \supset \mathfrak{so}(U)$;
- (iii) of special type otherwise.

Exceptional KTS associated to E_7

Contact type Poincaré type Special type

Exceptional KTS associated to E_7

Poincaré type Special type

Exceptional KTS associated to E_7

Poincaré type Special type

Exceptional KTS of special type E_7

$$\mathfrak{g} = \Lambda^{6}(\mathbb{C}^{7})^{*} \oplus \Lambda^{3}(\mathbb{C}^{7})^{*} \oplus \mathfrak{sl}(7,\mathbb{C}) \oplus \mathbb{C}E \oplus \Lambda^{3}\mathbb{C}^{7} \oplus \Lambda^{6}\mathbb{C}^{7}$$
$$-2 \quad -1 \quad 0 \quad 1 \quad 2$$

Let η be a scalar product on \mathbb{C}^7 and \sharp the associated musical morphism sending $\Lambda^k(\mathbb{C}^7)^* \to \Lambda^k \mathbb{C}^7$. Let • be the natural projection $\Lambda^3(\mathbb{C}^7)^* \otimes \Lambda^3 \mathbb{C}^7 \to \mathfrak{sl}(7,\mathbb{C})$.

Theorem

The vector space $\Lambda^3(\mathbb{C}^7)^*$ with triple product

$$(\alpha\beta\gamma) = \frac{2}{7}\eta(\alpha,\beta)\gamma - (\beta^{\sharp} \bullet \alpha) \cdot \gamma$$
(5)

is a K-simple KTS with associated Lie algebra E_7 and derivation algebra $\mathfrak{so}(7,\mathbb{C}).$

Thanks!