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Definition
An algebra g over a field K is called a Lie algebra if its
multiplication (denoted by (x , y) 7→ [x , y ]) satisfies the identities:
(1) [x , x ] = 0,
(2) [x , [y , z]] + [y , [z, x ]] + [z, [x , y ]] = 0,
for all x , y , z in g.

Let gl(C,n) be the general linear algebra, formed by all the
complex n × n matrices, for some n ∈ N.
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Given a Lie algebra g, a representation of g in Cn is a
homomorphism of Lie algebras f : g→ gl(Cn) = gl(C,n). If the
homomorphism f is injective then the representation called a
faithful representation. The natural integer n is called the
dimension of this representation.

Representations can be also defined by using arbitrary n -
dimensional vector spaces V . In such a case, a representation
would be a homomorphism of Lie algebra from g to the Lie
algebra gl(V ) of endomorphisms of the vector space V , which
is called g-module. However, it is sufficient to consider
representations on Cn because there always exists a unique
n ∈ N such that V is isomorphic to Cn.
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The Ado’s theorem
Every finite-dimensional Lie algebra g over a field K of
characteristic zero can be represented as a matrix Lie algebra,
formed by square matrices.

However, that result does not specify which is the minimal
dimension of the matrices involved in such representations.
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µ(g) = min{dim(M) | M a faithful g - module}

Let g be an abelian Lie algebra of dimension n over an arbitrary
field K . Then µ(g) = [2

√
n − 1].

For the Heisenberg Lie algebras µ(hm) = m + 1.
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General Diamond Lie algebra

The real general Diamond Lie algebra Dm is a (2m + 2) -
dimensional Lie algebra with basis
{J,P1,P2, . . . ,Pm,Q1,Q2, . . . ,Qm,T} and nonzero relations:

[J,Pk ] = Qk , [J,Qk ] = −Pk , [Pk ,Qk ] = T , 1 ≤ k ≤ m.

The complexification of the Diamond Lie algebra, Dm(C), is
Dm ⊗R C, and it the following (complex) basis:

P+
k = Pk − iQk , Q−

k = Pk + iQk , T , J, 1 ≤ k ≤ m,

where i is the imaginary unit, whose nonzero commutators are

[J,P+
k ] = iP+

k , [J,Q−
k ] = −iQ−

k , [P+
k ,Q

−
k ] = 2iT , 1 ≤ k ≤ m.
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Minimal faithful representation of complex general
Diamond Lie algebra

Proposition

Let Dm(C) be a (2m + 2)-dimensional general Diamond Lie
algebra with the basis

{J,P+
1 ,P

+
2 , . . . ,P

+
m ,Q

−
1 ,Q

−
2 , . . . ,Q

−
m ,T}.

Then its minimal faithful representation is given by the
correspondence
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ϕ : θJ +
m∑

k=1

αkP+
k +

m∑
k=1

βkQ−
k + δT 7−→

im
m+2θ αm αm−1 . . . α2 α1 − i

2δ

0 − 2i
m+2θ a1 . . . 0 0 βm

0 0 − 2i
m+2θ . . . 0 0 βm−1

...
...

...
. . .

...
...

...
0 0 0 . . . − 2i

m+2θ a1 β2

0 0 0 . . . 0 − 2i
m+2θ β1

0 0 0 . . . 0 0 im
m+2θ


.
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Construction of the Module

Let us denote by V = Cm+2 the natural ϕ(Dm(C))-module and
endow it with a Dm(C)-module structure, V ×Dm(C)→ V ,
given by

(x ,e) := xϕ(e),

where x ∈ V and e ∈ Dm(C).
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Then the action of Dm(C) on V = 〈X1,X2, . . . ,Xm+2〉 is given as
follows:

(∗)



(X1, J) = im
m+2X1,

(Xk , J) = − 2i
m+2Xk , 2 ≤ k ≤ m + 1,

(Xm+2, J) = im
m+2Xm+2,

(X1,P+
k ) = Xm+2−k , 1 ≤ k ≤ m,

(Xm+2−k ,Q−
k ) = Xm+2, 1 ≤ k ≤ m,

(X1,T ) = − i
2Xm+2,

and the remaining products in the action being zero.
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Faithful representation of real general Diamond Lie
algebra

Proposition

Let Dm(R) be a (2m + 2)-dimensional general real Diamond Lie
algebra with the basis {J,P1,P2, . . . ,Pm,Q1,Q2, . . . ,Qm,T}.
Then it is isomorphic to a subalgebra of sp(2m + 2,R) via the
map
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ψ : aJ +
m∑

k=1

bkPk +
m∑

k=1

ckQk + dT 7→



0 b1 b2 . . . bm cm . . . c2 c1 2d
0 0 0 . . . 0 0 . . . 0 −a c1
0 0 0 . . . 0 0 . . . −a 0 c2
...

...
...

. . .
...

...
...

...
...

...
0 0 0 . . . 0 −a . . . 0 0 cm
0 0 0 . . . a 0 . . . 0 0 −bm
...

...
...

. . .
...

...
. . .

...
...

...
0 0 a . . . 0 0 . . . 0 0 −b2
0 a 0 . . . 0 0 . . . 0 0 −b1
0 0 0 . . . 0 0 . . . 0 0 0


.
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Dm-module

Let be the action of Dm on V = 〈X1,X2, . . . ,Xm+2〉,
V ×Dm → V , given by

(∗∗)



(Xk , J) = −X2m+3−k , 2 ≤ k ≤ m + 1,
(Xk , J) = X2m+3−k , m + 2 ≤ k ≤ 2m + 1,
(X1,Pk ) = Xk+1, 1 ≤ k ≤ m,
(X2m+2−k ,Pk ) = −X2m+2, 1 ≤ k ≤ m,
(X1,Qk ) = X2m+2−k , 1 ≤ k ≤ m,
(Xk+1,Qk ) = X2m+2, 1 ≤ k ≤ m,
(X1,T ) = 2X2m+2,

and the remaining products in the action being zero.
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Definition
An algebra L over a field K is called a Leibniz algebra if for any
x , y , z ∈ L, the Leibniz identity

[[x , y ], z] = [[x , z], y ] + [x , [y , z]]

is satisfied, where [−,−] is the multiplication in L.
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One of the approaches to the investigation of Leibniz
algebras is a description of such algebras whose quotient
algebra with respect to the ideal I is a given Lie algebra.

Every non-Lie Leibniz algebra L contains a non-trivial ideal
(denoted by I), which is the subspace spanned by the squares
of elements of the algebra L.

For a Leibniz algebra, L we consider the homomorphism into
the quotient Lie algebra L/I which is called liezation of L.
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The map I × L/I → I defined as (v , x̄) 7→ [v , x ], v ∈ I, x ∈ L
endows I with a structure of L/I-module.

Denote by Q(L) = L/I ⊕ I, then the operation (−,−) defines
Leibniz algebra structure on Q(L), where

(x + v , y + w) := [x , y ] + [v , y ], (x , y) = [x , y ],

(v , x) = [v , x ], (x , v) = 0, (v ,w) = 0, x , y ∈ L, v ,w ∈ I.

In fact, this structure of Leibniz algebra is isomorphic to the
initial one of L.

Therefore, for a given Lie algebra G and a right G-module M,
we can construct a Leibniz algebra L = G ⊕M by the above
construction.
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Classification of Leibniz algebras

Let L Leibniz algebras such that L/I ∼= Dm(C) and the I is
Dm(C)-module defined by (∗). The action I ×Dm(C)→ I gives
rise to a minimal faithful representation of Dm(C).

Theorem (One of the main results)
Let L be an arbitrary Leibniz algebra with corresponding Lie
algebra Dm(C) and the ideal I associated as Dm(C)-module
defined by (∗). Then there exists a basis

{J,P+
1 ,P

+
2 , . . . ,P

+
m ,Q

−
1 ,Q

−
2 , . . . ,Q

−
m ,T ,X1,X2, . . . ,Xm+2}

of L such that
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[J,P+
k ] = iP+

k ,

[J,Q−
k ] = −iQ−

k ,

[P+
k ,Q

−
k ] = 2iT ,

[X1, J] = im
m+2X1,

[Xk , J] = − 2i
m+2Xk , 2 ≤ k ≤ m + 1,

[Xm+2, J] = im
m+2Xm+2,

[X1,P+
k ] = Xm+2−k , 1 ≤ k ≤ m,

[X1,T ] = − i
2Xm+2,

[Xm+2−k ,Q−
k ] = Xm+2, 1 ≤ k ≤ m,

where the omitted products are equal to zero.
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Theorem
An arbitrary real Leibniz algebra with corresponding Lie algebra
Dm, and the I ideal associated as Dm-module defined by (∗∗),
admits a basis
{J,P1,P2, . . . ,Pm,Q1,Q2, . . . ,Qm,T ,X1,X2, . . . ,X2m+2} such
that the multiplication table [Dm,Dm] has the following form:
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[J, J] = a1X2m+2, [J,Pk ] = −[Pk , J] = Qk ,

[J,Qk ] = −[Qk , J] = −Pk , [Pk ,Qk ] = −[Qk ,Pk ] = T ,
[Pk ,Ps] = [Qk ,Qs] = bk ,sX2m+2,

[Pk ,Qs] = [Qk ,Ps] = ck ,sX2m+2,

[Xl , J] = −X2m+3−l , 2 ≤ l ≤ m + 1,
[Xl , J] = X2m+3−l , m + 2 ≤ l ≤ 2m + 1,
[X1,Pl ] = Xl+1, 1 ≤ l ≤ m,
[X2m+2−l ,Pk ] = −X2m+2, 1 ≤ l ≤ m,
[X1,Ql ] = X2m+2−l , 1 ≤ l ≤ m,
[Xl+1,Ql ] = X2m+2, 1 ≤ l ≤ m,
[X1,T ] = 2X2m+2,

with the restrictions

bk ,s = −bs,k , ck ,s = cs,k , 1 ≤ k , s ≤ m, k 6= s.
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THANKS FOR YOUR ATTENTION!
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