Augmented ternary maps and their applications

Francisco Javier Navarro Izquierdo

Universidad de Cádiz

2018

Table of contents

1 Introduction and preliminary definitions

12 The structure of the f-triples

3 Applications

Introduction and preliminary definitions

Motivation:

When we have a ternary structure with some type of grading a complete knowledge of the grading set imply some structural theorems of the graded ternary structure.

Introduction and preliminary definitions

Purpose and scope:

1 Consider an arbitrary non-empty set.
2 Endow it with a new structure called f-triple.
3 Study it so as to obtain several decomposition results.
4 Apply the results to the grading set (considered as an adequate f-triple) of some ternary structures to obtain structural theorems.

Introduction and preliminary definitions

Definition

Let \mathcal{A} be a non-empty set and $\epsilon \notin \mathcal{A}$ an external element to \mathcal{A}. Any map

$$
f: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \cup\{\epsilon\}
$$

is called an augmented ternary map on \mathcal{A}. We will also say that \mathcal{A} is an f-triple.

Introduction and preliminary definitions

Definition

Let \mathcal{A} be an f-triple.
1 A subset S of \mathcal{A} is called a subtriple of \mathcal{A} if for any $x, y, z \in S$ we have that $f(x, y, z) \in S \cup\{\epsilon\}$.
2 A subtriple \mathcal{J} of \mathcal{A} is called an ideal if

$$
f(\mathcal{J}, \mathcal{A}, \mathcal{A}) \cup f(\mathcal{A}, \mathcal{J}, \mathcal{A}) \cup f(\mathcal{A}, \mathcal{A}, \mathcal{J}) \subset \mathcal{J} \cup\{\epsilon\}
$$

3 We say that \mathcal{A} is simple if its only ideals are \emptyset and \mathcal{A}.

Introduction and preliminary definitions

Definition

Let $f: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} \cup\{\epsilon\}$ be an augmented ternary map and $\left\{B_{i}: i \in I\right\}$ a family of pairwise disjoint subsets of \mathcal{A} such that

$$
\mathcal{A}=\bigcup_{i \in I} B_{i}
$$

Then we say that \mathcal{A} is the orthogonal union of the $\left\{B_{i}: i \in I\right\}$ if for any $i, j \in I$, with $i \neq j$, we have

$$
f\left(\mathcal{A}, B_{i}, B_{j}\right)=f\left(B_{i}, \mathcal{A}, B_{j}\right)=f\left(B_{i}, B_{j}, \mathcal{A}\right)=\{\epsilon\} .
$$

Table of contents

1 Introduction and preliminary definitions

2 The structure of the f-triples

3 Applications

The structure of the f-triples

To study the structure of the f-triples we introduce an equivalence relation on it. Then, we need to:

1 Introduce a new variable $\bar{x} \notin \mathcal{A}$ for each $x \in \mathcal{A}$, being:

$$
\overline{\mathcal{A}}:=\{\bar{x}: x \in \mathcal{A}\} .
$$

2. Define a map

$$
\phi: \mathcal{P}(\mathcal{A}) \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \rightarrow \mathcal{P}(\mathcal{A})
$$

The structure of the f-triples

Given any $\sigma \in S_{3}$ we define

$$
u_{\sigma}: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{A}) \text { and } v_{\sigma}: \mathcal{A} \times \overline{\mathcal{A}} \times \overline{\mathcal{A}} \rightarrow \mathcal{P}(\mathcal{A})
$$

as:

$$
u_{\sigma}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{cll}
\emptyset & \text { if } & f\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)=\epsilon \\
\{y\} & \text { if } & f\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)=y \in \mathcal{A}
\end{array}\right.
$$

and

$$
v_{\sigma}\left(x, \bar{y}_{2}, \bar{y}_{3}\right)=\left\{y_{1} \in \mathcal{A}: x \in u_{\sigma}\left(y_{1}, y_{2}, y_{3}\right)\right\} .
$$

The structure of the f-triples

Now we consider the following operation

$$
\mu: \mathcal{A} \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \rightarrow \mathcal{P}(\mathcal{A})
$$

given by:

- $\mu(x, y, z):=\bigcup_{\sigma \in S_{3}} u_{\sigma}(x, y, z)$ for any $x, y, z \in \mathcal{A}$.
- $\mu(x, \bar{y}, \bar{z}):=\bigcup_{\sigma \in S_{3}} v_{\sigma}(x, \bar{y}, \bar{z})$ for any $x \in \mathcal{A}$ and any $\bar{y}, \bar{z} \in \overline{\mathcal{A}}$.
- $\mu(x, \mathcal{A}, \overline{\mathcal{A}})=\mu(x, \overline{\mathcal{A}}, \mathcal{A})=\emptyset$.

The structure of the f-triples

Finally, we get the mapping

$$
\phi: \mathcal{P}(\mathcal{A}) \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \times(\mathcal{A} \dot{\cup} \overline{\mathcal{A}}) \rightarrow \mathcal{P}(\mathcal{A})
$$

which will be defined as

$$
\phi(U, y, z):=\bigcup_{x \in U} \mu(x, y, z)
$$

The structure of the f-triples

Definition

For any $x, y \in \mathcal{A}$, we say that x is connected to y if

- either $x=y$ or
- there exists $\left\{a_{1}, a_{2}, \ldots, a_{2 n}\right\} \subset \mathcal{A} \dot{\cup} \overline{\mathcal{A}}, n \geq 1$, such that

$$
\begin{aligned}
\emptyset & \neq \phi\left(\{x\}, a_{1}, a_{2}\right) \\
\emptyset & \neq \phi\left(\phi\left(\{x\}, a_{1}, a_{2}\right), a_{3}, a_{4}\right) \\
& \vdots \\
\emptyset & \neq \phi\left(\phi\left(\ldots \phi\left(\{x\}, a_{1}, a_{2}\right) \ldots\right), a_{2 n-3}, a_{2 n-2}\right) \\
y & \in \phi\left(\phi\left(\ldots \phi\left(\{x\}, a_{1}, a_{2}\right) \ldots\right), a_{2 n-1}, a_{2 n}\right) .
\end{aligned}
$$

In this case, the subset $\left\{a_{1}, \ldots, a_{2 n}\right\}$ is called a connection from x to y.

The structure of the f-triples

$$
\text { Connection }\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}, a_{2 n}\right\} .
$$

$$
\mathfrak{s}_{0}=\{x\}
$$

The structure of the f-triples

$$
\text { Connection }\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}, a_{2 n}\right\} .
$$

$$
\mathfrak{s}_{1}=\phi\left(\mathfrak{s}_{0}, a_{1}, a_{2}\right) \neq \emptyset
$$

The structure of the f-triples

$$
\text { Connection }\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}, a_{2 n}\right\} .
$$

$\mathfrak{s}_{2}=\phi\left(\mathfrak{s}_{1}, a_{3}, a_{4}\right) \neq \emptyset$

The structure of the f-triples

Connection $\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}, a_{2 n}\right\}$.

$$
\mathfrak{s}_{n-1}=\phi\left(\mathfrak{s}_{n-2}, a_{2 n-3}, a_{2 n-2}\right) \neq \emptyset
$$

The structure of the f-triples

Connection $\left\{a_{1}, a_{2}, \ldots, a_{2 n-1}, a_{2 n}\right\}$.

$$
\begin{aligned}
& \mathfrak{s}_{n}=\phi\left(\mathfrak{s}_{n-1}, a_{2 n-1}, a_{2 n}\right) \neq \emptyset
\end{aligned}
$$

The structure of the f-triples

Proposition

The relation \sim in \mathcal{A}, defined by $x \sim y$ if and only if x is connected to y, is an equivalence relation.

Theorem

Let \mathcal{A} be an f-triple. Then \mathcal{A} is the orthogonal (disjoint) union

$$
\mathcal{A}=\bigcup_{[a] \in \mathcal{A} / \sim}[a]
$$

of the family of the ideals $\{[a]:[a] \in \mathcal{A} / \sim\}$.

The structure of the f-triples

Definition

We say that an f-triple \mathcal{A} is a division f-triple if for any $x, i, j, k \in \mathcal{A}$ such that $f(i, j, k)=x$ then

- $i \in f(x, \mathcal{A}, \mathcal{A})$
- $j \in f(\mathcal{A}, x, \mathcal{A})$
- $k \in f(\mathcal{A}, \mathcal{A}, x)$.

The structure of the f-triples

Theorem

Let \mathcal{A} be a division f-triple. Then \mathcal{A} is simple if and only if \mathcal{A} has all of its elements connected.

Theorem

Let \mathcal{A} be a division f-triple. Then

$$
\mathcal{A}=\bigcup_{i \in I} \mathcal{J}_{i}
$$

is the orthogonal (disjoint) union of the family $\left\{\mathcal{J}_{i}\right\}_{i \in I}$ of all its nonempty simple ideals.

Table of contents

1 Introduction and preliminary definitions

2 The structure of the f-triples

3 Applications

Applications

Definition

Let $(\mathcal{T},\langle\cdot, \cdot, \cdot\rangle)$ be a triple system and I a (non-empty) set. It is said that \mathcal{T} is graded by I, if

$$
\mathcal{T}=\bigoplus_{i \in I} \mathcal{T}_{i}
$$

where any \mathcal{T}_{i} is a linear subspace of \mathcal{T} satisfying that for any $i, j, k \in I$ either $\left\langle\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k}\right\rangle=\{0\}$ or $\{0\} \neq\left\langle\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k}\right\rangle \subset \mathcal{T}_{r}$ for some (unique) $r \in I$. We call support of the grading to the set

$$
\Sigma:=\left\{i \in I: \mathcal{T}_{i} \neq\{0\}\right\}
$$

Applications

Considering the support Σ of the grading and some $\epsilon \notin \Sigma$ we introduce the augmented ternary map $f: \Sigma \times \Sigma \times \Sigma \rightarrow \Sigma \cup\{\epsilon\}$ defined by

$$
f(i, j, k):=\left\{\begin{array}{lll}
\epsilon & \text { if } & \left\langle\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k}\right\rangle=\{0\} \\
r & \text { if } & \{0\} \neq\left\langle\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k}\right\rangle \subset \mathcal{T}_{r}
\end{array}\right.
$$

Then, for any $[i] \in \Sigma / \sim$ we can define the linear subspace of \mathcal{T}

$$
\mathcal{T}_{[i]}:=\bigoplus_{k \in[i]} \mathcal{T}_{k}
$$

Applications

Definition

A homogeneous-ideal of $\mathcal{T}=\bigoplus_{i \in I} \mathcal{T}_{i}$ is a linear subspace \mathcal{J} of the form $\mathcal{J}=\bigoplus_{j \in J} \mathcal{T}_{j}$ with $J \subset I$, and satisfying

$$
\langle\mathcal{J}, \mathcal{T}, \mathcal{T}\rangle+\langle\mathcal{T}, \mathcal{J}, \mathfrak{T}\rangle+\langle\mathcal{T}, \mathcal{T}, \mathcal{J}\rangle \subset \mathcal{J}
$$

Definition

A graded triple system \mathcal{T} is called homogeneous-simple if its only homogeneous-ideals are $\{0\}$ and \mathcal{T}.

Applications

Theorem

Let \mathfrak{T} be a triple system graded by a set I. Then there is a decomposition of \mathcal{T} as the direct sum

$$
\mathcal{T}=\bigoplus_{[i] \in \Sigma / \sim} \mathcal{T}_{[i]}
$$

being any $\mathcal{T}_{[i]}$ a nonzero homogeneous-ideal of \mathcal{T}.

Applications

Definition

The grading

$$
\mathcal{T}=\bigoplus_{i \in I} \mathcal{T}_{i}
$$

is called a weak-division grading if for any $i, j, k \in I$ such that

$$
\{0\} \neq\left\langle\mathcal{T}_{i}, \mathcal{T}_{j}, \mathcal{T}_{k}\right\rangle \subset \mathcal{T}_{r}
$$

there exist $x_{1}, x_{2} \in \Sigma$ for any $x \in\{i, j, k\}$ verifying
■ $\{0\} \neq\left\langle\mathcal{T}_{r}, \mathcal{T}_{i_{1}}, \mathcal{T}_{i_{2}}\right\rangle \subset \mathcal{T}_{i}$
■ $\{0\} \neq\left\langle\mathcal{T}_{j_{1}}, \mathcal{T}_{r}, \mathcal{T}_{j_{2}}\right\rangle \subset \mathcal{T}_{j}$
$■\{0\} \neq\left\langle\mathcal{T}_{j_{1}}, \mathcal{T}_{j_{2}}, \mathcal{T}_{r}\right\rangle \subset \mathcal{T}_{k}$

Applications

Proposition

Let \mathcal{T} be a triple system with a weak-division grading. Then the f-triple Σ is a division f-triple.

Theorem

Let \mathfrak{T} be a triple system with a weak-division grading. Then

$$
\mathcal{T}=\bigoplus_{\alpha \in \Omega} \mathcal{T}_{\alpha}
$$

is the direct sum of the family $\left\{\mathcal{T}_{\alpha}\right\}_{\alpha \in \Omega}$ of all its nonzero homogeneous-simple homogeneous-ideals.

Applications

Similar structure theorems are given, also as consequence of the results on augmented ternary maps, for the classes of

1 Arbitrary supertriple systems with a multiplicative basis

2 Set-graded arbitrary algebraic pairs

Thank you

