Augmented ternary maps and their applications

Francisco Javier Navarro Izquierdo

Universidad de Cádiz

2018

Table of contents

1 Introduction and preliminary definitions

2 The structure of the *f*-triples

3 Applications

Motivation:

When we have a ternary structure with some type of grading a complete knowledge of the grading set imply some structural theorems of the graded ternary structure.

Purpose and scope:

- **1** Consider an arbitrary non-empty set.
- **2** Endow it with a new structure called f-triple.
- **3** Study it so as to obtain several decomposition results.
- Apply the results to the grading set (*considered as an adequate f-triple*) of some ternary structures to obtain structural theorems.

Definition

Let $\mathcal A$ be a non-empty set and $\epsilon \notin \mathcal A$ an external element to $\mathcal A.$ Any map

$$f: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{A} \cup \{\epsilon\}$$

is called an *augmented ternary map* on \mathcal{A} . We will also say that \mathcal{A} is an *f*-triple.

Definition

Let \mathcal{A} be an *f*-triple.

- **I** A subset S of A is called a *subtriple* of A if for any $x, y, z \in S$ we have that $f(x, y, z) \in S \cup \{\epsilon\}$.
- **2** A subtriple \mathcal{I} of \mathcal{A} is called an *ideal* if

 $f(\mathfrak{I},\mathcal{A},\mathcal{A})\cup f(\mathcal{A},\mathfrak{I},\mathcal{A})\cup f(\mathcal{A},\mathcal{A},\mathfrak{I})\subset \mathfrak{I}\cup\{\epsilon\}.$

3 We say that \mathcal{A} is *simple* if its only ideals are \emptyset and \mathcal{A} .

Definition

Let $f : \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{A} \cup \{\epsilon\}$ be an augmented ternary map and $\{B_i : i \in I\}$ a family of pairwise disjoint subsets of \mathcal{A} such that

$$\mathcal{A} = \bigcup_{i \in I} B_i.$$

Then we say that \mathcal{A} is the *orthogonal union* of the $\{B_i : i \in I\}$ if for any $i, j \in I$, with $i \neq j$, we have

$$f(\mathcal{A}, B_i, B_j) = f(B_i, \mathcal{A}, B_j) = f(B_i, B_j, \mathcal{A}) = \{\epsilon\}.$$

Table of contents

1 Introduction and preliminary definitions

2 The structure of the *f*-triples

3 Applications

To study the structure of the f-triples we introduce an equivalence relation on it. Then, we need to:

1 Introduce a new variable $\overline{x} \notin \mathcal{A}$ for each $x \in \mathcal{A}$, being:

$$\overline{\mathcal{A}}:=\{\overline{x}:x\in\mathcal{A}\}.$$

2 Define a map

$$\phi: \mathfrak{P}(\mathcal{A}) \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \rightarrow \mathfrak{P}(\mathcal{A}).$$

Given any $\sigma \in S_3$ we define

$$u_{\sigma}: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{P}(\mathcal{A}) \text{ and } v_{\sigma}: \mathcal{A} \times \overline{\mathcal{A}} \times \overline{\mathcal{A}} \to \mathcal{P}(\mathcal{A})$$

as:

$$u_{\sigma}(x_1, x_2, x_3) = \begin{cases} \emptyset & \text{if} \quad f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}) = \epsilon \\ \{y\} & \text{if} \quad f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}) = y \in \mathcal{A} \end{cases}$$

and

$$v_{\sigma}(x,\overline{y}_2,\overline{y}_3) = \{y_1 \in \mathcal{A} : x \in u_{\sigma}(y_1,y_2,y_3)\}.$$

Now we consider the following operation

$$\mu: \mathcal{A} \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \rightarrow \mathcal{P}(\mathcal{A})$$

given by:

Finally, we get the mapping

$$\phi: \mathfrak{P}(\mathcal{A}) \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \times (\mathcal{A} \stackrel{.}{\cup} \overline{\mathcal{A}}) \rightarrow \mathfrak{P}(\mathcal{A})$$

which will be defined as

$$\phi(U, y, z) := \bigcup_{x \in U} \mu(x, y, z).$$

Definition

For any $x, y \in \mathcal{A}$, we say that x is *connected* to y if

- either x = y or
- there exists $\{a_1, a_2, \ldots, a_{2n}\} \subset \mathcal{A} \cup \overline{\mathcal{A}}, n \geq 1$, such that

In this case, the subset $\{a_1, \ldots, a_{2n}\}$ is called a *connection* from x to y.

Connection
$$\{a_1, a_2, \ldots, a_{2n-1}, a_{2n}\}.$$

$$\mathfrak{s}_0 = \{x\}$$

Connection
$$\{a_1, a_2, \ldots, a_{2n-1}, a_{2n}\}.$$

$$\mathfrak{s}_1 = \phi(\mathfrak{s}_0, a_1, a_2) \neq \emptyset$$

Connection
$$\{a_1, a_2, \dots, a_{2n-1}, a_{2n}\}.$$

$$\mathfrak{s}_2 = \phi(\mathfrak{s}_1, a_3, a_4) \neq \emptyset$$

Connection
$$\{a_1, a_2, \ldots, a_{2n-1}, a_{2n}\}.$$

Connection
$$\{a_1, a_2, \ldots, a_{2n-1}, a_{2n}\}.$$

Proposition

The relation \sim in \mathcal{A} , defined by $x \sim y$ if and only if x is connected to y, is an equivalence relation.

Theorem

Let \mathcal{A} be an f-triple. Then \mathcal{A} is the orthogonal (disjoint) union

$$\mathcal{A} = \bigcup_{[a] \in \mathcal{A}/\sim} [a]$$

of the family of the ideals $\{[a] : [a] \in \mathcal{A}/\sim\}$.

Definition

We say that an *f*-triple \mathcal{A} is a *division f*-triple if for any $x, i, j, k \in \mathcal{A}$ such that f(i, j, k) = x then

- $i \in f(x, \mathcal{A}, \mathcal{A})$ • $j \in f(\mathcal{A}, x, \mathcal{A})$
- $k \in f(\mathcal{A}, \mathcal{A}, x).$

Theorem

Let \mathcal{A} be a division f-triple. Then \mathcal{A} is simple if and only if \mathcal{A} has all of its elements connected.

Theorem

Let \mathcal{A} be a division f-triple. Then

$$\mathcal{A} = igcup_{i \in I}^{\cdot} \mathfrak{I}_i$$

is the orthogonal (disjoint) union of the family $\{J_i\}_{i \in I}$ of all its nonempty simple ideals.

Table of contents

1 Introduction and preliminary definitions

2 The structure of the *f*-triples

3 Applications

Definition

Let $(\mathcal{T}, \langle \cdot, \cdot, \cdot \rangle)$ be a triple system and I a (non-empty) set. It is said that \mathcal{T} is *graded* by I, if

$$\mathfrak{T} = \bigoplus_{i \in I} \mathfrak{T}_i$$

where any \mathfrak{T}_i is a linear subspace of \mathfrak{T} satisfying that for any $i, j, k \in I$ either $\langle \mathfrak{T}_i, \mathfrak{T}_j, \mathfrak{T}_k \rangle = \{0\}$ or $\{0\} \neq \langle \mathfrak{T}_i, \mathfrak{T}_j, \mathfrak{T}_k \rangle \subset \mathfrak{T}_r$ for some (unique) $r \in I$. We call *support* of the grading to the set

$$\Sigma := \{ i \in I : \mathfrak{T}_i \neq \{0\} \}.$$

Considering the support Σ of the grading and some $\epsilon \notin \Sigma$ we introduce the augmented ternary map $f: \Sigma \times \Sigma \times \Sigma \to \Sigma \cup \{\epsilon\}$ defined by

$$f(i, j, k) := \begin{cases} \epsilon & \text{if} \quad \langle \mathfrak{T}_i, \mathfrak{T}_j, \mathfrak{T}_k \rangle = \{0\} \\ r & \text{if} \quad \{0\} \neq \langle \mathfrak{T}_i, \mathfrak{T}_j, \mathfrak{T}_k \rangle \subset \mathfrak{T}_r. \end{cases}$$

Then, for any $[i] \in \Sigma / \sim$ we can define the linear subspace of Υ

$$\mathfrak{T}_{[i]} := \bigoplus_{k \in [i]} \mathfrak{T}_k,$$

Definition

A homogeneous-ideal of $\mathfrak{T} = \bigoplus_{i \in I} \mathfrak{T}_i$ is a linear subspace \mathfrak{I} of the form $\mathfrak{I} = \bigoplus_{j \in J} \mathfrak{T}_j$ with $J \subset I$, and satisfying $\langle \mathfrak{I}, \mathfrak{T}, \mathfrak{T} \rangle + \langle \mathfrak{T}, \mathfrak{I}, \mathfrak{T} \rangle + \langle \mathfrak{T}, \mathfrak{T}, \mathfrak{I} \rangle \subset \mathfrak{I}.$

Definition

A graded triple system \mathcal{T} is called *homogeneous-simple* if its only homogeneous-ideals are $\{0\}$ and \mathcal{T} .

Theorem

Let \mathfrak{T} be a triple system graded by a set I. Then there is a decomposition of \mathfrak{T} as the direct sum

$$\Im = \bigoplus_{[i] \in \Sigma/\sim} \Im_{[i]},$$

being any $\mathfrak{T}_{[i]}$ a nonzero homogeneous-ideal of \mathfrak{T} .

Definition

The grading

$$\mathfrak{T} = \bigoplus_{i \in I} \mathfrak{T}_i$$

is called a weak-division grading if for any $i,j,k\in I$ such that

$$\{0\} \neq \langle \mathfrak{T}_i, \mathfrak{T}_j, \mathfrak{T}_k \rangle \subset \mathfrak{T}_r,$$

there exist $x_1, x_2 \in \Sigma$ for any $x \in \{i, j, k\}$ verifying

$$\{0\} \neq \langle \mathfrak{T}_r, \mathfrak{T}_{i_1}, \mathfrak{T}_{i_2} \rangle \subset \mathfrak{T}_i$$
$$\{0\} \neq \langle \mathfrak{T}_{j_1}, \mathfrak{T}_r, \mathfrak{T}_{j_2} \rangle \subset \mathfrak{T}_j$$
$$\{0\} \neq \langle \mathfrak{T}_{j_1}, \mathfrak{T}_{j_2}, \mathfrak{T}_r \rangle \subset \mathfrak{T}_k$$

Proposition

Let \mathfrak{T} be a triple system with a weak-division grading. Then the f-triple Σ is a division f-triple.

Theorem

Let $\ensuremath{\mathbb{T}}$ be a triple system with a weak-division grading. Then

$$\mathfrak{T} = \bigoplus_{\alpha \in \Omega} \mathfrak{T}_{\alpha}$$

is the direct sum of the family $\{\mathcal{T}_{\alpha}\}_{\alpha\in\Omega}$ of all its nonzero homogeneous-simple homogeneous-ideals.

Similar structure theorems are given, also as consequence of the results on augmented ternary maps, for the classes of

- **1** Arbitrary supertriple systems with a multiplicative basis
- **2** Set-graded arbitrary algebraic pairs

Thank you