Quadratic 2-step Lie algebras: Computational algorithms and classification

Jorge Roldán López
Departamento de Matemáticas y Computation Universidad de La Rioja
Logroño, Spain

First International Workshop,"Non-associative Algebras in Cádiz" $22^{\text {nd }}$ February 2018

1 Introduction

2 Tools and results

3 Algorithms

4 Current work

Definitions

Definition (Quadratic)

A nonassociative algebra A over a field \mathbb{K} that carry a symmetric and nondegenerate invariant bilinear form f is called quadratic algebra.

Where invariant means $f(a b, c)=f(a, b c)$.

Definition (2-step)

A Lie algebra $(\mathfrak{g},[x, y])$ is 2-step in case $\mathfrak{g}^{3}=0 \neq \mathfrak{g}^{2}$.
Where $\mathfrak{g}^{3}=\operatorname{span}\langle[[x y] z]: x, y, z \in \mathfrak{g}\rangle$ and $\mathfrak{g}^{2}=\operatorname{span}\langle[x y]: x, y \in \mathfrak{g}\rangle$.
Definition (Type)
A Lie algebra $(\mathfrak{g},[x, y])$ has type d when $d=\operatorname{dim} \mathfrak{g}-\operatorname{dim} \mathfrak{g}^{2}$.

Lemma

The type of any 2-step nilpotent Lie algebra is ≥ 2.

Ussage of quadratic algebras

Example

Any full matrix algebra with its trace.

Example

Any semisimple Lie algebra with its killing form.

Quadratic algebras appears in:

- Cartan Criterion for the semisimplicity of a f.d. Lie algebra.
- Structure theory of naturally reductive homogeneous spaces.
- Theory of modular representations of finite groups.
- Completely integrable Hamiltonian systems

■...

Existence and importance

In 1997, Noui and Revoy proved that the classification of these type of Lie algebras is equivalent to the classification of alternating trilinear forms, an open problem.

Ovando (2007) showed the existence of real quadratic 2-step Lie algebras of arbitrary type $d \geq 3$, with $d=4$ as the only exception. Achieving them as homomorphisms of vectors space with inner products.

These results and the ideas in Benito, de-la-Concepción and Laliena (2017) gives results for the existence and isomorphisms of these algebras over arbitrary fields of characteristic 0 .

Cronology

1957-Tsou and Walker: preliminary results on the existence of regular quadratic Lie algebras over the real field.

1985-Medina and Revoy: Introduction to the method of double extension.
1987-Favre and Santharoubane: (characteristic 0) Classification of indecomposable quadratic nilpotent Lie algebras of dimension ≤ 7 (up to isometries, there are exactly 4 algebras)

1997-Noui and Revoy: (Characteristic 0), 2-step quadratic and alternating trilinear forms.

1999-Bordemann: (Characteristic $\neq 2$), Introduction of the method of T^{*}-extension.

Cronology

2000 to 2014-Several authors:
\square Classification of quadratic nilpotent of dimension ≤ 10 over the real field (2007-2014),

- classification of quadratic solvable of dimension ≤ 8 (2014) over algebraically closed fields of characteristic 0 ,
- irreducible quadratic nonsolvable of dimension ≤ 13 over the complex field (2013).

2007-Ovando: 2-step quadratic real Lie algebras, existence and applications.
2017-Benito, de-la-Concepción and Laliena: (Characteristic 0), Free nilpotent and quadratic nilpotent Lie algebras, a categorical approach.

General tools

- Basic definition, structure constants and Jacobi identity.

Problem: Unfeasible in high dimensions.
■ Double extensions process: Inductive classification. In each step we add a nilpotent quadratic Lie algebra and a skew symmetric derivation.

Problem: Determining skew derivations.
$\square T^{*}$-extensions: It involves the third scalar cohomology $H^{3}(A, \mathbb{K})$. Problem: Very restrictive tool.

■ Free nilpotent Lie algebras and invariant forms: Quite natural. Lie algebras are provided as quotients of free nilpotent Lie algebras endowed with invariant bilinear forms. The natural action of the automorphism group of free nilpotent Lie algebras provides the isometrically isomorphic algebras.

Problem: Determining invariant forms in general.

Quotients of free t-nilpotent Lie algebras

Let $\mathfrak{F} \mathfrak{L}(\mathfrak{m})$ be the free Lie algebra on the set of generators $\mathfrak{m}=\left\{x_{1}, \ldots, x_{d}\right\}$, $d \geq 2$ we have:

$$
\mathfrak{n}_{d, t}=\frac{\mathfrak{F} \mathfrak{L}(\mathfrak{m})}{\mathfrak{F} \mathfrak{L}(\mathfrak{m})^{t+1}} .
$$

Main features:

- Any t-nilpotent and d-Type is a homomorphic image of $\mathfrak{n}_{d, t}$.

■ Der $\mathfrak{n}_{d, t}=\mathfrak{s l}_{d}(k) \oplus \mathfrak{r}, \mathfrak{r}$ solvable radical.

- Aut $\mathfrak{n}_{d, t} \cong G L_{d}(k) \ltimes N$ (semidirect product).

Free nilpotent vs. quadratics

Lemma (Benito, de-la-Concepción \& Lalinea, 2017)

Let \mathfrak{n} the factor Lie algebra $\frac{\mathfrak{n}_{d, t}}{l}$ where I is an ideal such that $\mathfrak{n}_{d, t}^{t} \nsubseteq I \subseteq \mathfrak{n}_{d, t}^{2}$. The there exists a symmetric, invariant and non-degenerate bilinear form on \mathfrak{n} if and only if there exist that same form on $\mathfrak{n}_{d, t}$ such that $\mathfrak{n}_{d, t}^{\perp}=l$.

- $\operatorname{Sym}_{0}(d, t)$ is the category whose objects are the symmetric invariant bilinear forms ψ on the free Lie algebra $\mathfrak{n}_{d, t} \mathrm{~s}$. t. Ker $\psi \subseteq \mathfrak{n}_{d, t}^{2}$ and $\mathfrak{n}_{d, t}^{t} \nsubseteq \operatorname{Ker} \psi$. The morphisms are isometric Lie homomorphisms of $\mathfrak{n}_{d, t}$ up to an equivalence relation.
- NilpQuad ${ }_{d, t}$ stands for the category whose objects are the t-nilpotent quadratic Lie algebras (n, φ) of type d. The morphisms are Lie homomorphisms that are isometries.
■ $Q_{d, t}: \operatorname{Sym}_{0}(d, t) \rightarrow$ NilpQuad $_{d, t}$ the functor

$$
Q_{d, t}(\psi)=\left(\mathfrak{n}_{d, t} / \operatorname{Ker} \psi, \varphi\right), \quad \varphi(\bar{a}, \bar{b})=\psi(a, b)
$$

Equivalence result

Theorem (Benito, de-la-Concepción \& Lalinea,2017)

For all $\psi_{1}, \psi_{2} \in \operatorname{Obj}\left(\operatorname{Sym}_{0}(d, t)\right)$, the following assertions are equivalent:
$1 \psi_{1}$ and ψ_{2} are isomorphic in $\operatorname{Sym}_{0}(d, t)$.
$2 Q_{d, t}\left(\psi_{1}\right)$ and $Q_{d, t}\left(\psi_{2}\right)$ are isometrically isomorphic Lie algebras.
3 There exists a isometric automorphism $\theta:\left(\mathfrak{n}_{d, t}, \psi_{1}\right) \rightarrow\left(\mathfrak{n}_{d, t}, \psi_{2}\right)$.
Moreover, the set $\operatorname{Orb}_{\text {Aut }}^{n_{d, t}}(\psi)=\left\{\psi_{\theta}: \theta \in\right.$ Aut $\left.\mathfrak{n}_{d, t}\right\}$ is equal to the set of bilinear invariant symmetric forms isomorphic to ψ in the category $\operatorname{Sym}_{0}(d, t)$. Therefore the number of orbits of the natural action of Aut $\mathfrak{n}_{d, t}$ is exactly the number of isomorphism types in the classification of t-nilpotent quadratic Lie algebras of type d up to isometries.

Reduction

Any quadratic Lie algebra (\mathfrak{g}, φ) satisfies:
$\square Z(\mathfrak{g})^{\perp}=\mathfrak{g}^{2}$ y $Z(\mathfrak{g})=\left(\mathfrak{g}^{2}\right)^{\perp}$. So, $\operatorname{dim} \mathfrak{g}=\operatorname{dim} \mathfrak{g}^{2}+\operatorname{dim} Z(\mathfrak{g})$.
■ The dimension of $Z(\mathfrak{g}) \cap \mathfrak{g}^{2}$ is said isotropic index of \mathfrak{g}^{2}.
$\square \mathfrak{g}$ is reduced in case $Z(\mathfrak{g}) \subseteq \mathfrak{g}^{2}$ and the pair (r, s) where $r=\operatorname{dim} \mathfrak{g}^{2} y$ $s=\operatorname{dim} Z(\mathfrak{g})$ is called the (bi-)type of \mathfrak{g}.

Theorem (Tsou-Walker, 1956)

Any non reduced and non abelian quadratic Lie algebra (\mathfrak{g}, φ) decomposes as a orthogonal direct sum of proper ideals, $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{a}$, where $\left(\mathfrak{g}_{1}, \varphi\right)$ is a reduced and quadratic Lie algebra and (\mathfrak{a}, φ) is abelian and quadratic.

Universal example

Let $(\mathfrak{v},\langle\cdot, \cdot\rangle, \rho)$ be the a triple where $\langle\cdot, \cdot\rangle$ is a nondegenerate bilinear form and $\rho: \mathfrak{v} \rightarrow \mathfrak{s o}(\mathfrak{v})$ an injective linear map satisfying the identity:

$$
\rho(v)(u)+\rho(u)(v)=0
$$

In the vector space $\mathfrak{n}(\mathfrak{v}, \rho)=\mathfrak{v} \oplus \mathfrak{v}^{*}$, we introduce:
\square the canonical hyperbolic symmetric form $\varphi_{\mathfrak{v}}{ }^{1}$ and
■ the skew symmetric product $[u+f, v+g]=f_{u, v}$, where

$$
f_{u, v}(w)=\langle\rho(w)(u), v\rangle=-\langle\rho(u)(w), v\rangle
$$

Then, $\left(\mathfrak{n}(\mathfrak{v}, \rho), \varphi_{\mathfrak{v}}\right)$ is a 2-step quadratic Lie algebra.

[^0]
Theorem (Ovando, 2007)

Up to isometries, the real 2-step quadratic Lie algebras are orthogonal direct sums, as ideals, of the form:

$$
\left(\mathfrak{n}(\mathfrak{v}, \rho), \varphi_{\mathfrak{v}}\right) \oplus\left(\mathbb{R}^{m},\langle\cdot, \cdot\rangle\right),
$$

where $\left(\mathbb{R}^{m},\langle,\rangle,\right)$ is the abelian m-dimensional Lie algebra endowed with the standard inner product and $\left(\mathfrak{n}(\mathfrak{v}, \rho), \varphi_{\mathfrak{v}}\right)$ is as defined in the previous example. Moreover for each $3 \geq d=\operatorname{dim} \mathfrak{v} \neq 4$, there exists a Lie algebra $\left((\mathfrak{v}, \rho), \varphi_{\mathfrak{v}}\right)$.

Is it possible to get an algorithmic construction?

Construction

Definition

For any $d \geq 2$, a family $\left\{A_{1}, \ldots, A_{d}\right\}$ of matrices of order $d \times d$ is called
d-quadratic if the following properties are satisfied:
1 The matrices are skewsymmetric $\left(A_{i}^{t}=-A_{i}\right)$.
2 The i-th column of every A_{i} is null.
3 For any $j>i$, the j-th column of A_{i} is the additive inverse of the i-th column of A_{j}.
4 If $B_{i<j}$ denotes the submatrix of A_{i} given by the set of all j-th columns of A_{i} such that $i<j$, the matrix of order $d \times \frac{d(d-1)}{2}$,

$$
B\left(A_{1}, \ldots, A_{d}\right)=\left[B_{1<j} B_{2<j} \ldots B_{d-1<j}\right],
$$

has maximal rank d.

Universal construction: algebras

Let $\left\{A_{1}, \ldots, A_{d}\right\}$ be a d-quadratic family of matrices of order $d \times d$ over any field of characteristic 0 . On the $2 d$-dimensional vector space $\mathfrak{n}\left(A_{1}, \ldots, A_{d}\right)=\left\langle v_{1}, \ldots, v_{d}, z_{1}, \ldots, z_{d}\right\rangle$ we introduce:

■ the canonical metabolic ${ }^{2}$ bilinear form $\varphi_{0}\left(v_{i}, z_{j}\right)=\delta_{i, j}$,

$$
\varphi_{0}\left(v_{i}, v_{j}\right)=\varphi_{0}\left(z_{i}, z_{j}\right)=0 \text { and }
$$

- the bilinear skew symmetric product given by the formula

$$
\left[z_{i}, n\right]=0 \quad \text { and }\left[v_{i}, v_{j}\right]=\sum_{k=1}^{d} a_{k j}^{i} z_{k}
$$

where the structure constants are determined by a family of d-quadratic matrices $A_{i}=\left(a_{k j}^{i}\right)$ for $1 \leq i \leq d$.
Then, $\left(\mathfrak{n}\left(A_{1}, \ldots, A_{d}\right), \varphi_{0}\right)$ is a 2 -step quadratic Lie algebra.

[^1]
Current work: examples

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{1} & a_{2} & a_{3} \\
0 & -a_{1} & 0 & a_{4} & a_{5} \\
0 & -a_{2} & -a_{4} & 0 & a_{6} \\
0 & -a_{3} & -a_{5} & -a_{6} & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ccccc}
0 & 0 & -a_{1} & -a_{2} & -a_{3} \\
0 & 0 & 0 & 0 & 0 \\
a_{1} & 0 & 0 & a_{7} & a_{8} \\
a_{2} & 0 & -a_{7} & 0 & a_{9} \\
a_{3} & 0 & -a_{8} & -a_{9} & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{ccccc}
0 & a_{1} & 0 & -a_{4} & -a_{5} \\
-a_{1} & 0 & 0 & -a_{7} & -a_{8} \\
0 & 0 & 0 & 0 & 0 \\
a_{4} & a_{7} & 0 & 0 & a_{10} \\
a_{5} & a_{8} & 0 & -a_{10} & 0
\end{array}\right) \\
& A_{4}=\left(\begin{array}{ccccc}
0 & a_{2} & a_{4} & 0 & -a_{6} \\
-a_{2} & 0 & a_{7} & 0 & -a_{9} \\
-a_{4} & -a_{7} & 0 & 0 & -a_{10} \\
0 & 0 & 0 & 0 & 0 \\
a_{6} & a_{9} & a_{10} & 0 & 0
\end{array}\right) \quad A_{5}=\left(\begin{array}{ccccc}
0 & a_{3} & a_{5} & a_{6} & 0 \\
-a_{3} & 0 & a_{8} & a_{9} & 0 \\
-a_{5} & -a_{8} & 0 & a_{10} & 0 \\
-a_{6} & -a_{9} & -a_{10} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& B\left(A_{1}, \ldots, A_{5}\right)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & -a_{6} \\
0 & a_{1} & a_{2} & a_{3} & 0 & 0 & 0 & -a_{7} & -a_{8} & -a_{9} \\
-a_{1} & 0 & a_{4} & a_{5} & 0 & a_{7} & a_{8} & 0 & 0 & -a_{10} \\
-a_{2} & -a_{4} & 0 & a_{6} & -a_{7} & 0 & a_{9} & 0 & a_{10} & 0 \\
-a_{3} & -a_{5} & -a_{6} & 0 & -a_{8} & -a_{9} & 0 & -a_{10} & 0 & 0
\end{array}\right)
\end{aligned}
$$

Current work: examples

$$
\begin{aligned}
& \left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & -a_{6} \\
0 & a_{1} & a_{2} & a_{3} & 0 & 0 & 0 & -a_{7} & -a_{8} & -a_{9} \\
-a_{1} & 0 & a_{4} & a_{5} & 0 & a_{7} & a_{8} & 0 & 0 & -a_{10} \\
-a_{2} & -a_{4} & 0 & a_{6} & -a_{7} & 0 & a_{9} & 0 & a_{10} & 0 \\
-a_{3} & -a_{5} & -a_{6} & 0 & -a_{8} & -a_{9} & 0 & -a_{10} & 0 & 0
\end{array}\right) \\
& v_{1} \wedge v_{2}=-a_{1} z_{3}-a_{2} z_{4}-a_{3} z_{5}, \\
& v_{2} \wedge v_{4}=-a_{2} z_{1}+a_{7} z_{3}-a_{9} z_{5}, \\
& v_{1} \wedge v_{3}=a_{1} z_{2}-a_{4} z_{4}-a_{5} z_{5} \text {, } \\
& v_{2} \wedge v_{5}=-a_{3} z_{1}+a_{8} z_{3}+a_{9} z_{4}, \\
& v_{1} \wedge v_{4}=a_{2} z_{2}+a_{4} z_{3}-a_{6} z_{5} \text {, } \\
& v_{3} \wedge v_{4}=-a_{4} z_{1}-a_{7} z_{2}-a_{10} z_{5}, \\
& v_{1} \wedge v_{5}=a_{3} z_{2}+a_{5} z_{3}+a_{6} z_{4}, \\
& v_{3} \wedge v_{5}=-a_{5} z_{1}-a_{8} z_{2}+a_{10} z_{4}, \\
& v_{2} \wedge v_{3}=-a_{1} z_{1}-a_{7} z_{4}-a_{8} z_{5}, \\
& v_{4} \wedge v_{5}=-a_{6} z_{1}-a_{9} z_{2}-a_{10} z_{3} .
\end{aligned}
$$

Current work: examples

$$
\begin{aligned}
& \left(\begin{array}{cccccccccccccc}
0 & 0 & 0 & 0 & 0 & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & -a_{6} & -a_{7} & -a_{8} & -a_{9} \\
0 & a_{1} & a_{2} & a_{3} & a_{4} & 0 & 0 & 0 & 0 & a_{10} \\
-a_{1} & 0 & a_{5} & a_{6} & a_{7} & 0 & a_{11} & a_{12} & a_{13} & 0 & 0 & 0 & 0 & -a_{14} \\
-a_{12} & -a_{15} & -a_{16} \\
-a_{2}- & -a_{5} & 0 & a_{8} & a_{9} & -a_{11} & 0 & a_{14} & a_{15} & 0 & a_{17} & a_{18} & 0 & 0 \\
-a_{3} & -a_{6}-a_{8} & 0 & a_{10} & -a_{12} & -a_{14} & 0 & a_{16} & -a_{17} & 0 & a_{19} & 0 & a_{20} & 0 \\
-a_{4}-a_{7} & -a_{9}-a_{10} & 0 & -a_{13}-a_{15} & -a_{16} & 0 & -a_{18} & -a_{19} & 0 & -a_{20} & 0 & 0
\end{array}\right), \\
& v_{1} \wedge v_{2}=-a_{1} z_{3}-a_{2} z_{4}-a_{3} z_{5}-a_{4} z_{6},
\end{aligned} \quad \begin{array}{lll}
& v_{1} \wedge v_{3}=a_{1} z_{2}-a_{5} z_{4}-a_{6} z_{5}-a_{7} z_{6}, \\
v_{1} \wedge v_{4}=a_{2} z_{2}+a_{5} z_{3}-a_{8} z_{5}-a_{9} z_{6}, & v_{1} \wedge v_{5}=a_{3} z_{2}+a_{6} z_{3}+a_{8} z_{4}-a_{10} z_{6}, \\
v_{1} \wedge v_{6}=a_{4} z_{2}+a_{7} z_{3}+a_{9} z_{4}+a_{10} z_{5}, & v_{2} \wedge v_{3}=-a_{1} z_{1}-a_{11} z_{4}-a_{12} z_{5}-a_{13} z_{6}, \\
v_{2} \wedge v_{4}=-a_{2} z_{1}+a_{11} z_{3}-a_{14} z_{5}-a_{15} z_{6}, & v_{2} \wedge v_{5}=-a_{3} z_{1}+a_{12} z_{3}+a_{14} z_{4}-a_{16} z_{6}, \\
v_{2} \wedge v_{6}=-a_{4} z_{1}+a_{13} z_{3}+a_{15} z_{4}+a_{16} z_{5}, & v_{3} \wedge v_{4}=-a_{5} z_{1}-a_{11} z_{2}-a_{17} z_{5}-a_{18} z_{6}, \\
v_{3} \wedge v_{5}=-a_{6} z_{1}-a_{12} z_{2}+a_{17} z_{4}-a_{19} z_{6}, & v_{3} \wedge v_{6}=-a_{7} z_{1}-a_{13} z_{2}+a_{18} z_{4}+a_{19} z_{5}, \\
v_{4} \wedge v_{5}=-a_{8} z_{1}-a_{14} z_{2}-a_{17} z_{3}-a_{20} z_{6}, & v_{4} \wedge v_{6}=-a_{9} z_{1}-a_{15} z_{2}-a_{18} z_{3}+a_{20} z_{5}, \\
v_{5} \wedge v_{6}=-a_{10} z_{1}-a_{16} z_{2}-a_{19} z_{3}-a_{20} z_{4} .
\end{array}
$$

Universal construction: algebras

Benito, de-la-Concepción, Sesma, Roldán-López
For every $d \geq 4$, there exist quadratic 2-step Lie algebras of type d. Up to isometric isomorphisms the algebras in this class are of the form $\left(\mathfrak{n}\left(A_{1}, \ldots, A_{d_{1}}\right), \varphi\right) \perp(\mathfrak{a}, \phi)$ where $d=d_{1}+d_{2}$ and $4 \neq d_{1} \geq 3,\left\{A_{1}, \ldots, A_{d_{1}}\right\}$ is a d_{1}-quadratic family of matrices, and (\mathfrak{a}, ϕ) is a quadratic abelian Lie algebra of dimension $d_{2} \geq 0$.

Universal construction: automorphisms

The vector space $\mathfrak{v}=\left\{v_{1}, \ldots, v_{d}\right\}$ provides the free nilpotent $\mathfrak{n}_{d, 2}=\mathfrak{v} \oplus \Lambda^{2} \mathfrak{v}$ by means of the skew product $\left[v_{i}, v_{j}\right]=v_{i} \wedge v_{j}$.
Any linear map $f: \mathfrak{v} \rightarrow \mathfrak{n}_{d, 2}=\mathfrak{v} \oplus \Lambda^{2} \mathfrak{v}$ for which $f\left(v_{1}\right), \ldots, f\left(v_{d}\right)$ are linearly independent, extends to the automorphism τ_{f} by declaring

$$
\begin{equation*}
\tau_{f}\left(\left[v_{i}, v_{j}\right]\right)=\left[f\left(v_{i}\right), f\left(v_{j}\right)\right]=f\left(v_{i}\right) \wedge f\left(v_{j}\right) \tag{1}
\end{equation*}
$$

In fact, any automorphism of $\mathfrak{n}_{d, 2}$ is of this form. Hence the automorphisms in the basis $\left\{v_{i}, v_{i} \wedge v_{j}\right\}$ are given by matrices of the form:

$$
\tau_{f}(Q, X)=\left(\begin{array}{cc}
Q & 0_{d \times \frac{d(d-1)}{}}^{\hat{Q}^{2}}
\end{array}\right)
$$

where X is a any matrix of order $\frac{d(d-1)}{2} \times d, Q$ is a regular matrix of order $d \times d, \hat{Q}$ is a matrix completely determined from Q by following the rule (1). In case $Q=\left(b_{i j}\right)$, we get

$$
\tau_{f}\left(v_{i} \wedge v_{j}\right)=\sum_{1 \leq r<s \leq n} \operatorname{det}\left(\begin{array}{ll}
b_{r i} & b_{r j} \\
b_{s i} & b_{s j}
\end{array}\right) v_{r} \wedge v_{s}
$$

Universal construction: automorphisms

Benito, de-la-Concepción, Sesma, Roldán-López
Let $\left\{A_{1}, \ldots, A_{d}\right\}$ and $\left\{E_{1}, \ldots, E_{d}\right\}$ be two families of d-quadratic matrices and $\left(\mathfrak{n}\left(A_{1}, \ldots, A_{d}\right), \varphi_{0}\right)$ and $\left(\mathfrak{n}\left(E_{1}, \ldots, E_{d}\right), \psi_{0}\right)$ be the quadratic Lie algebras attached to them as it is described in the universal construction. Then, the Lie algebras $\left(\mathfrak{n}\left(A_{1}, \ldots, A_{d}\right), \varphi_{0}\right)$ and $\left(\mathfrak{n}\left(E_{1}, \ldots, E_{d}\right), \psi_{0}\right)$ are isometrically isomorphic if and only if there exists a regular $d \times d$ matrix Q such that

$$
B\left(E_{1}, \ldots, E_{d}\right)=Q^{t} B\left(A_{1}, \ldots, A_{d}\right) \hat{Q} .
$$

where \hat{Q} is given in terms of $Q=\left(b_{i j}\right)$ by means of the automorphism $\tau_{f}(Q, 0)$.

Current work: achievements

Achievements

- Create d-quadratic matrices families.
- Define Lie algebra given a d-quadratic family.
- All 3-quadratic families describe isomorphic algebras.

Current work: goals

Noui and Revoy proved that there is a finite number of quadratic 2-step nilpotent algebras of type less or equal than 8 . We are now working on automorphisms in order to improve this result. Based on the computation of a large number of random algebras we get:

Conjecture

All 5-quadratic families describe isomorphic algebras.

Conjecture

Given two d-quadratic families, where $d \geq 6$, there is not always an automorphism between them.

Thank you!

[^0]: ${ }^{1}$ The hyperbolic symmetric form on a vector space \mathfrak{v} is the form on $\mathbb{H}(\mathfrak{v})=\mathfrak{v} \oplus \mathfrak{v}^{*}, \mathfrak{v}^{*}$ dual space, defined as: $\varphi_{\mathfrak{v}}\left(v_{1}+f_{1}, v_{2}+f_{2}\right)=f_{1}\left(v_{2}\right)+f_{2}\left(v_{1}\right)$.

[^1]: ${ }^{2}$ A nondegenerate symmetric bilinear form on a vector space V is called metabolic if it has a totally isotropic subspace of dimension a half of the dimension of V. In characteristic not 2, the classes of metabolic and hyperbolic forms coincide.

