Jordan Isomorphisms of Finitary Incidence Algebras

Mykola Khrypchenko

Departamento de Matemática
Universidade Federal de Santa Catarina

The First International Workshop
"Non-associative algebras in Cádiz",

Cádiz, Spain,
February 23, 2018

Contents

(1) Introduction

- Ordered sets
- Incidence algebras
- Jordan homomorphisms
- Jordan isomorphisms of simple algebras
- Jordan homomorphisms on matrix algebras
- Finitary incidence algebras
(2) Jordan isomorphisms of $F I(P, R)$
- The restriction of φ
- Extensions of ψ and θ
- The decomposition of φ
(3) Future work
(4) References

Introduction

Quasiordered sets

- P a set;
- \leq a binary relation on P.

Definition 1.1

The relation \leq is called a quasiorder if \leq is reflexive and transitive. The pair (P, \leq) is called a quasiordered set.

Synonyms: preorder (resp. preordered set).

Definition 1.2

A quasiorder \leq is called a partial order, if it is antisymmetric. Then (P, \leq) is a partially ordered set (poset).

Locally finite quasiordered sets

- (P, \leq) a quasiordered set.

Definition 1.3

(P, \leq) is said to be locally finite, if for every pair $x \leq y$ the set

$$
[x, y]:=\{z \in P \mid x \leq z \leq y\}
$$

is finite.

Example 1.4

\mathbb{N} with the usual partial order is locally finite, but $\mathbb{N} \cup\{\infty\}$ is not locally finite.
\mathbb{R} with the usual partial order is not locally finite.

Incidence algebras

- ($P, \leq)$ a locally finite quasiordered set;
- R a commutative associative unital ring;

Definition 1.5

The incidence algebra of P over R is the set of functions

$$
I(P, R)=\{f: P \times P \rightarrow R \mid f(x, y)=0, \text { if } x \not \leq y\}
$$

with the natural R-module structure and multiplication given by the convolution

$$
(f g)(x, y)=\sum_{x \leq z \leq y} f(x, z) g(z, y)
$$

It is associative (in general, non-commutative) unital R-algebra.

Examples

- The full matrix algebra $M_{n}(R)$
- $P=\{1, \ldots, n\}$ with $x \leq y$ for all $x, y \in P$;
- The upper triangular matrix algebra $T_{n}(R)$
- $P=\{1, \ldots, n\}$ with the usual partial order;

Remark 1.6

If $|P|=n$, then $I(P, R)$ is isomorphic to a subalgebra of $M_{n}(R)$, and by this reason $I(P, R)$ is sometimes called a structural matrix algebra over R. Moreover, if \leq is a partial order, then $I(P, R)$ can be identified with a subalgebra of $T_{n}(R)$.

Alternative description of $I(P, R)$

- (P, \leq) a locally finite quasiordered set;
- R a commutative associative unital ring;

Remark 1.7

$I(P, R)$ is the set of formal series $\left\{\alpha=\sum_{x \leq y} \alpha_{x y} e_{x y} \mid \alpha_{x y} \in R\right\}$, where $e_{x y}$ is a symbol and

$$
\left(\sum_{x \leq y} \alpha_{x y} e_{x y}\right)\left(\sum_{x \leq y} \beta_{x y} e_{x y}\right)=\sum_{x \leq y}\left(\sum_{x \leq z \leq y} \alpha_{x z} \beta_{z y}\right) e_{x y} .
$$

In particular, if P is finite, then $I(P, R)$ is the semigroup algebra of $\left\{e_{x y} \mid x \leq y\right\} \cup\{0\}$, where $e_{x y} e_{u v}=\delta_{y u} e_{x v}$.

Jordan homomorphisms

- A and B algebras over a commutative ring R;
- $\varphi: A \rightarrow B$ an R-linear map.

Definition 1.8

The map φ is called a Jordan homomorphism, if φ preserves the Jordan product, i.e. $\varphi(a \circ b)=\varphi(a) \circ \varphi(b)$, where $a \circ b=a b+b a$. A bijective Jordan homomorphism is called a Jordan isomorphism.

Examples of Jordan homomorphisms

- Homomorphisms $A \rightarrow B$;
- anti-homomorphisms $A \rightarrow B$;
- sums of a homomorphism $\psi: A \rightarrow B$ and an anti-homomorphism $\theta: A \rightarrow B$, provided that $\psi(a) \theta(b)=\theta(a) \psi(b)=0$ for all $a, b \in A$.

Jordan isomorphisms on simple algebras

Theorem 1.9 (Ancochea [2])

Each Jordan automorphism of the quaternion algebra Q is either an automorphism or an anti-automorphism.

Theorem 1.10 (Ancochea [3])

Each Jordan automorphism of a division algebra D of characteristic different from 2 is either an automorphism or an anti-automorphism.

Theorem 1.11 (Ancochea [3])

Each Jordan automorphism of a simple algebra A of characteristic different from 2 is either an isomorphism or an anti-isomorphism.

In particular, this is true for the full matrix algebra $M_{n}(D)$ over a division ring D.

Eliminating the restriction on the characteristic

Kaplansky and Hua considered linear maps $\varphi: A \rightarrow A^{\prime}$ satisfying

$$
\begin{align*}
\varphi(a b a) & =\varphi(a) \varphi(b) \varphi(a), \tag{1}\\
\varphi\left(1_{A}\right) & =\varphi\left(1_{A^{\prime}}\right) \tag{2}
\end{align*}
$$

If char $A \neq 2$, then (1) and (2) are equivalent to $\varphi(a \circ b)=\varphi(a) \circ \varphi(b)$ for all a, b.

Theorem 1.12 (Hua [7])

An additive bijective map φ from a division ring D into itself satisfying (1) and (2) is either an automorphism, or an anti-automorphism.

Theorem 1.13 (Kaplansky [9])

A linear bijective map φ between unital simple algebras A and A^{\prime} satisfying (1) and (2) is either an isomorphism, or an anti-isomorphism.

If the char $A \neq 2$, this recovers the above mentioned results of Ancochea,

Jordan homomorphisms on prime rings

- R a ring of characteristic different from 2 ;
- R^{\prime} a prime ring of characteristic different from 2 and 3;
- $\varphi: R \rightarrow R^{\prime}$ is a Jordan homomorphism.

Theorem 1.14 (Herstein [6])
If φ is onto, then φ is either a homomorphism, or an anti-homomorphism.

Theorem 1.15 (Smiley [12])

The Herstein's result holds for R^{\prime} of characteristic 3 as well.

Jordan homomorphisms $M_{n}(R) \rightarrow A$

By a Jordan homomorphism between two rings R and R^{\prime} Jacobson and Rickart meant an additive map $\varphi: R \rightarrow R^{\prime}$ which satisfies
(1) $\varphi\left(a^{2}\right)=\varphi(a)^{2}$,
(2) $\varphi(a b a)=\varphi(a) \varphi(b) \varphi(a)$.

It follows from (1) that φ preserves the Jordan product. If R is 2-torsionfree, then the converse also holds, and (2) is also satisfied in this case.

- R an arbitrary unital ring;
- $n \geq 2$.

Theorem 1.16 (Jacobson-Rickart [8])

Each Jordan homomorphism of the rings $M_{n}(R) \rightarrow A$ is the sum of a homomorphism and an anti-homomorphism.

Jordan automorphisms of $T_{n}(\mathbb{C})$

Theorem 1.17 (Molnár-Šemrl [11])

Each Jordan automorphism of $T_{n}(\mathbb{C})$ is either an automorphism, or an anti-automorphism.

Jordan isomorphisms of $T_{n}(R)$

- R a 2-torsionfree commutative unital ring;
- $n \geq 2$.

Theorem 1.18 (Beidar-Brešar-Chebotar [4])

The following conditions are equivalent:
(1) R is connected (i.e. $E(R)=\{0,1\}$);
(2) each Jordan isomorphism $T_{n}(R) \rightarrow A$ is either an isomorphism, or an anti-isomorphism.

Near-sum

- $A=A_{0} \oplus A_{1}$, as an R-module, where A_{0} is a subalgebra of A and A_{1} is an ideal of A;
- $\psi, \theta: A \rightarrow B$ are a homomorphism and $\theta: A \rightarrow B$ is an anti-homomorphism;
- $\left.\psi\right|_{A_{0}}=\left.\theta\right|_{A_{0}}$ and $\psi(a) \theta(b)=\theta(a) \psi(b)=0$ for all $a, b \in A_{1}$.

Definition 1.19 (Benkovič [5])

The near-sum of ψ and θ (with respect to A_{0} and A_{1}) is the R-linear map $\varphi: A \rightarrow B$, which satisfies
(1) $\left.\varphi\right|_{A_{0}}=\left.\psi\right|_{A_{0}}=\left.\theta\right|_{A_{0}}$;
(2) $\left.\varphi\right|_{A_{1}}=\left.\psi\right|_{A_{1}}+\left.\theta\right|_{A_{1}}$.

Proposition 1.20 (Benkovič [5])

The near-sum of a homomorphism and an anti-homomorphism is a Jordan homomorphism.

Jordan homomorphisms of $T_{n}(R)$

- R a 2-torsionfree commutative unital ring;
- $n \geq 2$;
- $D_{n}(R)$ the subalgebra of $T_{n}(R)$ consisting of the diagonal matrices;
- $S_{n}(R)$ the ideal of $T_{n}(R)$ consisting of the strictly upper triangular matrices.

Theorem 1.21 (Benkovič [5])

Each Jordan homomorphism $\varphi: T_{n}(R) \rightarrow A$ is the near-sum of a homomorphism $\psi: T_{n}(R) \rightarrow A$ and an anti-homomorphism $\theta: T_{n}(R) \rightarrow A$ with respect to $D_{n}(R)$ and $S_{n}(R)$.

Jordan homomorphisms of $I(P, R)$

- R a 2-torsionfree commutative unital ring;
- $n \geq 2$;
- (P, \leq) either a finite poset, or a finite quasi-ordered set each of whose equivalence classes contains at least 2 elements;
- $D(P, R)$ the subalgebra of $I(P, R)$ consisting of the diagonal elements;
- $S(P, R)$ the ideal of $I(P, R)$ consisting of the elements with zero on the diagonal.

Theorem 1.22 (Akkurt-Akkurt-Barker [1])

Each Jordan homomorphism $\varphi: I(P, R) \rightarrow A$ is the near sum of a homomorphism $\psi: I(P, R) \rightarrow A$ and an anti-homomorphism $\theta: I(P, R) \rightarrow A$ with respect to $D(P, R)$ and $S(P, R)$.

Finitary incidence algebras

- (P, \leq) a (not necessarily locally finite) poset;
- R a commutative associative unital ring;

Remark 1.23

$I(P, R)$ is an R-module, but not an algebra, since the convolution $\alpha \beta$ of $\alpha, \beta \in I(P, R)$ may be undefined.

Definition 1.24 (Khripchenko and Novikov [10])

An element $\alpha=\sum_{x \leq y} \alpha_{x y} e_{x y} \in I(P, R)$ is called a finitary series if for every $x \leq y$ the set

$$
\left\{(u, v) \mid x \leq u<v \leq y, \alpha_{u v} \neq 0\right\}
$$

is finite.

Finitary incidence algebras

Proposition 1.25 (Khripchenko and Novikov [10])

The set of finitary series, denoted by FI(P,R), forms an algebra under convolution. It is called the finitary incidence algebra of P over R. Moreover, $I(P, R)$ is a bimodule over $\operatorname{FI}(P, R)$.

Connection with incidence algebras

Remark 1.26

If P is locally finite, then $I(P, R)=F I(P, R)$.

```
Theorem 1.27 (Khripchenko-Novikov [10]) If \(R\) is a field, then \(F I(P, R) \cong F I(Q, R) \Rightarrow P \cong Q\).
```


Corollary 1.28

If R is a field and P is not locally finite, then there is no locally finite Q, such that $F I(P, R) \cong I(Q, R)$.

$D(P, R)$ and $Z(P, R)$

Definition 1.29

An element $\alpha \in F I(P, R)$ is said to be diagonal, if $\alpha_{x y}=0$ for $x \neq y$. Diagonal elements form a commutative subalgebra of $\operatorname{Fl}(P, R)$, which we denote by $D(P, R)$.

Definition 1.30

The elements $\alpha \in I(P, R)$ satisfying $\alpha_{x x}=0$ for all x form an $F I(P, R)$-submodule of $I(P, R)$ denoted by $Z(P, R)$. Consequently, $F Z(P, R):=Z(P, R) \cap F I(P, R)$ is an ideal of $F I(P, R)$.

Proposition 1.31

The R-module admits the decomposition $I(P, R)=D(P, R) \oplus Z(P, R)$. Consequently, $F I(P, R)=D(P, R) \oplus F Z(P, R)$ as an R-module.

Jordan isomorphisms of $F I(P, R)$

The subalgebra $\tilde{I}(P, R)$

Definition 2.1

Denote by $\tilde{I}(P, R)$ the subalgebra of $F I(P, R)$ consisting of the finite sums $\alpha=\sum_{x \leq y} \alpha_{x y} e_{x y}$.

Definition 2.2

We introduce $\tilde{D}(P, R)=\tilde{I}(P, R) \cap D(P, R)$ and $\tilde{Z}(P, R)=\tilde{I}(P, R) \cap Z(P, R)$.

Proposition 2.3

The subset $\tilde{D}(P, R)=\tilde{I}(P, R) \cap D(P, R)$ is a subalgebra of $\tilde{I}(P, R)$ and $\tilde{\sim}(P, R)=\tilde{I}(P, R) \cap Z(P, R)$ is an ideal of $\tilde{I}(P, R)$. Moreover, $\tilde{I}(P, R)=\tilde{D}(P, R) \oplus \tilde{Z}(P, R)$, as an R-module.

The restriction of a Jordan isomorphism to $\tilde{I}(P, R)$

- (X, \leq), an arbitrary (non-necessarily locally finite) poset;
- R is a commutative 2-torsionfree unital ring;
- A an associative R-algebra;
- φ a Jordan homomorphism from $\operatorname{FI}(P, R)$ to A.

Proposition 2.4

The restriction of φ to $\tilde{I}(P, R)$ is a Jordan homomorphism $\tilde{I}(P, R) \rightarrow A$. The proof of Theorem 2.1 from [1] works in this case, resulting that the R-linear maps

$$
\begin{aligned}
\psi\left(e_{x y}\right) & =\varphi\left(e_{x}\right) \varphi\left(e_{x y}\right) \varphi\left(e_{y}\right) \\
\theta\left(e_{x y}\right) & =\varphi\left(e_{y}\right) \varphi\left(e_{x y}\right) \varphi\left(e_{x}\right)
\end{aligned}
$$

which are, respectively, a homomorphism and an anti-homomorphism $\tilde{I}(P, R) \rightarrow A$. Moreover, $\left.\varphi\right|_{\tilde{I}(P, R)}$ is the near-sum of ψ and θ with respect to the subalgebra $\tilde{D}(P, R)$ and the ideal $\tilde{Z}(P, R)$ of $\tilde{I}(P, R)$.

Natural questions

Problem 2.5

Can ψ and θ be extended to a homomorphism and an anti-homomorphism $F I(P, R) \rightarrow A$, respectively?

Problem 2.6

Will φ be the near-sum of the extensions of ψ and θ with respect to $D(P, R)$ and $Z(P, R)$?

Key lemmas

- $\varphi: F I(P, R) \rightarrow A$ a Jordan homomorphism.

Lemma 2.7

For any $f \in F I(P, R)$ one has

$$
\begin{aligned}
\forall x<y: \alpha_{x y} \varphi\left(e_{x y}\right) & =\varphi\left(e_{x}\right) \varphi(\alpha) \varphi\left(e_{y}\right)+\varphi\left(e_{y}\right) \varphi(\alpha) \varphi\left(e_{x}\right) \\
\forall x: \alpha_{x x} \varphi\left(e_{x}\right) & =\varphi\left(e_{x}\right) \varphi(\alpha) \varphi\left(e_{x}\right) .
\end{aligned}
$$

Lemma 2.8

Let φ be bijective. Then, given $a, b \in A$, one has $a=b$ is and only if

$$
\begin{cases}\forall x<y: & \varphi\left(e_{x}\right) a \varphi\left(e_{y}\right)+\varphi\left(e_{y}\right) a \varphi\left(e_{x}\right)=\varphi\left(e_{x}\right) b \varphi\left(e_{y}\right)+\varphi\left(e_{y}\right) b \varphi\left(e_{x}\right) \\ \forall x: & \varphi\left(e_{x}\right) a \varphi\left(e_{x}\right)=\varphi\left(e_{x}\right) b \varphi\left(e_{x}\right) .\end{cases}
$$

ψ and θ on $D(P, R)$

- φ a Jordan isomorphism from $\operatorname{FI}(P, R)$ to A.

Proposition 2.9

Let $\varphi: F I(P, R) \rightarrow A$ be a Jordan isomorphism. Then $\left.\varphi\right|_{D(P, R)}$ is a homomorphism (and an anti-homomorphism at the same time).

An extension of ψ

- φ a Jordan isomorphism from $\operatorname{FI}(P, R)$ to A.

Lemma 2.10

Given $\alpha \in F Z(P, R)$ and $x \leq y$, define

$$
\alpha_{x y}^{\prime}=\varphi^{-1}\left(\varphi\left(e_{x}\right) \varphi(\alpha) \varphi\left(e_{y}\right)\right)_{x y}
$$

Then $\alpha^{\prime} \in F Z(P, R)$.

Definition 2.11

Given $\alpha \in F Z(P, R)$ and $x \leq y$, set $\tilde{\psi}(\alpha)=\varphi\left(\alpha^{\prime}\right)$. In the general situation, when $\alpha \underset{\sim}{\in} F I(P, R)$, write $\alpha=\alpha_{D}+\alpha_{Z}$ and thus set $\tilde{\psi}(\alpha)=\varphi\left(\alpha_{D}\right)+\tilde{\psi}\left(\alpha_{Z}\right)$.

Lemma 2.12

The map $\tilde{\psi}$ is an R-linear extension of ψ.

$\tilde{\psi}$ is a homomorphism

Lemma 2.13

If $\alpha \in D(P, R)$ and $\beta \in F Z(P, R)$, then $\tilde{\psi}(\alpha \beta)=\tilde{\psi}(\alpha) \tilde{\psi}(\beta)$. Similarly, if $\alpha \in F Z(P, R)$ and $\beta \in D(P, R)$, then $\tilde{\psi}(\alpha \beta)=\tilde{\psi}(\alpha) \tilde{\psi}(\beta)$.

Lemma 2.14

If $\alpha, \beta \in F Z(P, R)$, then $\tilde{\psi}(\alpha \beta)=\tilde{\psi}(\alpha) \tilde{\psi}(\beta)$.

Proposition 2.15

The map $\tilde{\psi}$ is a homomorphism $\operatorname{FI}(P, R) \rightarrow A$.

An extension of θ

- φ a Jordan isomorphism from $\operatorname{FI}(P, R)$ to A.

Proposition 2.16

Given $\alpha \in F Z(P, R)$ and $x \leq y$, define

$$
\alpha_{x y}^{\prime \prime}=\varphi^{-1}\left(\varphi\left(e_{y}\right) \varphi(\alpha) \varphi\left(e_{x}\right)\right)_{x y}
$$

Then $\alpha^{\prime \prime} \in F Z(P, R)$.

Definition 2.17

Given $\alpha \in F Z(P, R)$ and $x \leq y$, set $\tilde{\psi}(\alpha)=\varphi\left(\alpha^{\prime \prime}\right)$. In the general situation, when $\alpha \in F I(P, R)$, write $\alpha=\alpha_{D}+\alpha_{Z}$ and thus set $\tilde{\theta}(\alpha)=\varphi\left(\alpha_{D}\right)+\tilde{\theta}\left(\alpha_{Z}\right)$.

Lemma 2.18

The map $\tilde{\theta}$ is an anti-homomorphism $\operatorname{FI}(P, R) \rightarrow A$ which extends θ.

The decomposition of φ

Theorem 2.19

Each Jordan isomorphism $\varphi: F I(P, R) \rightarrow A$ is the near-sum of $\tilde{\psi}$ and $\tilde{\theta}$ with respect to the subalgebra $D(P, R)$ and the ideal $F Z(P, R)$.

Future work

Dropping the assumptions on P and R

Problem 3.1

Prove the above mentioned result without the restriction that R is 2-torsionfree (i.e. do not use the result of Akkurt et al [1]).

Problem 3.2

Generalize the description of Jordan isomorphism to the case, when P is quasi-ordered.

Generalizing the result by Beidar-Brešar-Chebotar

- P a poset;
- R connected.

Problem 3.3

Is it true that each Jordan isomorphism $\operatorname{FI}(P, R) \rightarrow A$ is either an isomorphism or an anti-isomorphism?

References

References I

囯 Akkurt，E．，Akkurt，M．，and Barker，G．P． Jordan homomorphisms of the structural matrix algebras． Linear Multilinear Algebra 63， 12 （2015），2518－2525．

围 Ancochea，G．
Le théorème de von Staudt en géométrie projective quaternionienne． J．Reine Angew．Math． 184 （1942），193－198．
围 Ancochea，G．
On semi－automorphisms of division algebras．
Ann．Math．（2） 48 （1947），147－153．
围 Beidar，K．I．，Brešar，M．，and Chebotar，M．A． Jordan isomorphisms of triangular matrix algebras over a connected commutative ring．
Linear Algebra Appl．312，1－3（2000），197－201．

References II

－Benkovič，D．

Jordan homomorphisms on triangular matrices．
Linear Multilinear Algebra 53， 5 （2005），345－356．
固 Herstein，I．N．
Jordan homomorphisms．
Trans．Am．Math．Soc． 81 （1956），331－341．
围 Hua，L．K．
On the automorphisms of a field．
Proc．Nat．Acad．Sci．U．S．A． 35 （1949），386－389．
固 Jacobson，N．，and Rickart，C．E．
Jordan homomorphisms of rings．
Trans．Amer．Math．Soc． 69 （1950），479－502．

References III

嗇 Kaplansky，I．

Semi－automorphisms of rings．
Duke Math．J． 14 （1947），521－525．
围 Khripchenko，N．S．，and Novikov，B．V．
Finitary incidence algebras．
Comm．Algebra 37， 5 （2009），1670－1676．
回 Molnár，L．，and Šemrl，P．
Some linear preserver problems on upper triangular matrices．
Linear Multilinear Algebra 45，2－3（1998），189－206．
回 Smiley，M．F．
Jordan homomorphisms onto prime rings．
Trans．Am．Math．Soc． 84 （1957），426－429．

MUCHAS GRACIAS!

