# Jordan Isomorphisms of Finitary Incidence Algebras

Mykola Khrypchenko

Departamento de Matemática Universidade Federal de Santa Catarina

The First International Workshop "Non-associative algebras in Cádiz",



Universidad de Cádiz

Cádiz, Spain, February 23, 2018



Jordan Isomorphisms of FI(P, R)

# Contents



### Introduction

- Ordered sets
- Incidence algebras
- Jordan homomorphisms
- Jordan isomorphisms of simple algebras
- Jordan homomorphisms on matrix algebras
- Finitary incidence algebras

# Jordan isomorphisms of FI(P, R)

- The restriction of  $\varphi$
- Extensions of  $\psi$  and  $\theta$
- $\bullet$  The decomposition of  $\varphi$

# 3 Future work

4 References



# Introduction



Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

▲ ■ ▶ ■ 少へで Cádiz 2018 3 / 41

.⊒ . ►

- P a set;
- $\leq$  a binary relation on *P*.

### Definition 1.1

The relation  $\leq$  is called a quasiorder if  $\leq$  is reflexive and transitive. The pair  $(P, \leq)$  is called a quasiordered set.

Synonyms: preorder (resp. preordered set).

# Definition 1.2 A quasiorder $\leq$ is called a partial order, if it is antisymmetric. Then $(P, \leq)$ is a partially ordered set (poset).

# Locally finite quasiordered sets

•  $(P, \leq)$  a quasiordered set.

### Definition 1.3

 $(P, \leq)$  is said to be locally finite, if for every pair  $x \leq y$  the set

$$[x,y] := \{z \in P \mid x \le z \le y\}$$

is finite.

### Example 1.4

 $\mathbb N$  with the usual partial order is locally finite, but  $\mathbb N\cup\{\infty\}$  is not locally finite.

 ${\mathbb R}$  with the usual partial order is not locally finite.

I C A

# Incidence algebras

- $(P, \leq)$  a locally finite quasiordered set;
- R a commutative associative unital ring;

### Definition 1.5

The incidence algebra of P over R is the set of functions

$$I(P,R) = \{f : P \times P \to R \mid f(x,y) = 0, \text{ if } x \leq y\}$$

with the natural R-module structure and multiplication given by the convolution

$$(fg)(x,y) = \sum_{x \le z \le y} f(x,z)g(z,y).$$

It is associative (in general, non-commutative) unital R-algebra.



- The full matrix algebra  $M_n(R)$ 
  - $P = \{1, \ldots, n\}$  with  $x \leq y$  for all  $x, y \in P$ ;
- The upper triangular matrix algebra  $T_n(R)$ 
  - $P = \{1, \dots, n\}$  with the usual partial order;

### Remark 1.6

If |P| = n, then I(P, R) is isomorphic to a subalgebra of  $M_n(R)$ , and by this reason I(P, R) is sometimes called a structural matrix algebra over R. Moreover, if  $\leq$  is a partial order, then I(P, R) can be identified with a subalgebra of  $T_n(R)$ .



# Alternative description of I(P, R)

- $(P, \leq)$  a locally finite quasiordered set;
- R a commutative associative unital ring;

#### Remark 1.7

I(P, R) is the set of formal series  $\{\alpha = \sum_{x \leq y} \alpha_{xy} e_{xy} \mid \alpha_{xy} \in R\}$ , where  $e_{xy}$  is a symbol and

$$\left(\sum_{x \le y} \alpha_{xy} e_{xy}\right) \left(\sum_{x \le y} \beta_{xy} e_{xy}\right) = \sum_{x \le y} \left(\sum_{x \le z \le y} \alpha_{xz} \beta_{zy}\right) e_{xy}.$$

In particular, if *P* is finite, then I(P, R) is the semigroup algebra of  $\{e_{xy} \mid x \leq y\} \cup \{0\}$ , where  $e_{xy}e_{uv} = \delta_{yu}e_{xv}$ .



- A and B algebras over a commutative ring R;
- $\varphi: A \rightarrow B$  an *R*-linear map.

### Definition 1.8

The map  $\varphi$  is called a Jordan homomorphism, if  $\varphi$  preserves the Jordan product, i.e.  $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$ , where  $a \circ b = ab + ba$ . A bijective Jordan homomorphism is called a Jordan isomorphism.



- Homomorphisms  $A \rightarrow B$ ;
- anti-homomorphisms  $A \rightarrow B$ ;
- sums of a homomorphism  $\psi : A \to B$  and an anti-homomorphism  $\theta : A \to B$ , provided that  $\psi(a)\theta(b) = \theta(a)\psi(b) = 0$  for all  $a, b \in A$ .



## Theorem 1.9 (Ancochea [2])

Each Jordan automorphism of the quaternion algebra Q is either an automorphism or an anti-automorphism.

# Theorem 1.10 (Ancochea [3])

Each Jordan automorphism of a division algebra D of characteristic different from 2 is either an automorphism or an anti-automorphism.

### Theorem 1.11 (Ancochea [3])

Each Jordan automorphism of a simple algebra A of characteristic different from 2 is either an isomorphism or an anti-isomorphism.

In particular, this is true for the full matrix algebra  $M_n(D)$  over a division ring D.

# Eliminating the restriction on the characteristic

Kaplansky and Hua considered linear maps  $\varphi: {\it A} \rightarrow {\it A}'$  satisfying

$$\varphi(aba) = \varphi(a)\varphi(b)\varphi(a), \tag{1}$$

$$\varphi(1_A) = \varphi(1_{A'}). \tag{2}$$

If char  $A \neq 2$ , then (1) and (2) are equivalent to  $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$  for all a, b.

### Theorem 1.12 (Hua [7])

An additive bijective map  $\varphi$  from a division ring D into itself satisfying (1) and (2) is either an automorphism, or an anti-automorphism.

# Theorem 1.13 (Kaplansky [9])

A linear bijective map  $\varphi$  between unital simple algebras A and A' satisfying (1) and (2) is either an isomorphism, or an anti-isomorphism.

If the char  $A \neq 2$ , this recovers the above mentioned results of Ancochea,

Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

Cádiz 2018 12 / 41

- R a ring of characteristic different from 2;
- R' a prime ring of characteristic different from 2 and 3;
- $\varphi: R \to R'$  is a Jordan homomorphism.

### Theorem 1.14 (Herstein [6])

If  $\varphi$  is onto, then  $\varphi$  is either a homomorphism, or an anti-homomorphism.

# Theorem 1.15 (Smiley [12])

The Herstein's result holds for R' of characteristic 3 as well.



By a Jordan homomorphism between two rings R and R' Jacobson and Rickart meant an additive map  $\varphi: R \to R'$  which satisfies

2 
$$\varphi(aba) = \varphi(a)\varphi(b)\varphi(a).$$

It follows from (1) that  $\varphi$  preserves the Jordan product. If R is 2-torsionfree, then the converse also holds, and (2) is also satisfied in this case.

- R an arbitrary unital ring;
- *n* ≥ 2.

### Theorem 1.16 (Jacobson-Rickart [8])

Each Jordan homomorphism of the rings  $M_n(R) \rightarrow A$  is the sum of a homomorphism and an anti-homomorphism.

Universidad

# Theorem 1.17 (Molnár-Šemrl [11])

Each Jordan automorphism of  $T_n(\mathbb{C})$  is either an automorphism, or an anti-automorphism.



Mykola Khrypchenko (UFSC)

### • R a 2-torsionfree commutative unital ring;

n ≥ 2.

### Theorem 1.18 (Beidar-Brešar-Chebotar [4])

The following conditions are equivalent:

- **1** *R* is connected (i.e.  $E(R) = \{0, 1\}$ );
- each Jordan isomorphism  $T_n(R) \rightarrow A$  is either an isomorphism, or an anti-isomorphism.



# Near-sum

- A = A<sub>0</sub> ⊕ A<sub>1</sub>, as an R-module, where A<sub>0</sub> is a subalgebra of A and A<sub>1</sub> is an ideal of A;
- $\psi, \theta : A \to B$  are a homomorphism and  $\theta : A \to B$  is an anti-homomorphism;
- $\psi|_{A_0} = \theta|_{A_0}$  and  $\psi(a)\theta(b) = \theta(a)\psi(b) = 0$  for all  $a, b \in A_1$ .

### Definition 1.19 (Benkovič [5])

The near-sum of  $\psi$  and  $\theta$  (with respect to  $A_0$  and  $A_1$ ) is the *R*-linear map  $\varphi : A \to B$ , which satisfies

### Proposition 1.20 (Benkovič [5])

The near-sum of a homomorphism and an anti-homomorphism is a Jordan homomorphism.

Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

- R a 2-torsionfree commutative unital ring;
- n ≥ 2;
- $D_n(R)$  the subalgebra of  $T_n(R)$  consisting of the diagonal matrices;
- $S_n(R)$  the ideal of  $T_n(R)$  consisting of the strictly upper triangular matrices.

# Theorem 1.21 (Benkovič [5])

Each Jordan homomorphism  $\varphi : T_n(R) \to A$  is the near-sum of a homomorphism  $\psi : T_n(R) \to A$  and an anti-homomorphism  $\theta : T_n(R) \to A$  with respect to  $D_n(R)$  and  $S_n(R)$ .



# Jordan homomorphisms of I(P, R)

- R a 2-torsionfree commutative unital ring;
- n ≥ 2;
- (P, ≤) either a finite poset, or a finite quasi-ordered set each of whose equivalence classes contains at least 2 elements;
- D(P, R) the subalgebra of I(P, R) consisting of the diagonal elements;
- S(P, R) the ideal of I(P, R) consisting of the elements with zero on the diagonal.

### Theorem 1.22 (Akkurt-Akkurt-Barker [1])

Each Jordan homomorphism  $\varphi : I(P, R) \to A$  is the near sum of a homomorphism  $\psi : I(P, R) \to A$  and an anti-homomorphism  $\theta : I(P, R) \to A$  with respect to D(P, R) and S(P, R).

→ Ξ →

# Finitary incidence algebras

- $(P, \leq)$  a (not necessarily locally finite) poset;
- R a commutative associative unital ring;

### Remark 1.23

I(P, R) is an *R*-module, but not an algebra, since the convolution  $\alpha\beta$  of  $\alpha, \beta \in I(P, R)$  may be undefined.

# Definition 1.24 (Khripchenko and Novikov [10])

An element  $\alpha = \sum_{x \le y} \alpha_{xy} e_{xy} \in I(P, R)$  is called a finitary series if for every  $x \le y$  the set

$$\{(u,v) \mid x \le u < v \le y, \ \alpha_{uv} \neq 0\}$$

#### is finite.

A B A A B A

A D > A A P >

# Proposition 1.25 (Khripchenko and Novikov [10])

The set of finitary series, denoted by FI(P, R), forms an algebra under convolution. It is called the finitary incidence algebra of P over R. Moreover, I(P, R) is a bimodule over FI(P, R).



### Remark 1.26

If P is locally finite, then I(P, R) = FI(P, R).

Theorem 1.27 (Khripchenko-Novikov [10])

If R is a field, then  $FI(P, R) \cong FI(Q, R) \Rightarrow P \cong Q$ .

### Corollary 1.28

If R is a field and P is not locally finite, then there is no locally finite Q, such that  $FI(P, R) \cong I(Q, R)$ .



# D(P,R) and Z(P,R)

### Definition 1.29

An element  $\alpha \in FI(P, R)$  is said to be *diagonal*, if  $\alpha_{xy} = 0$  for  $x \neq y$ . Diagonal elements form a commutative subalgebra of FI(P, R), which we denote by D(P, R).

### Definition 1.30

The elements  $\alpha \in I(P, R)$  satisfying  $\alpha_{xx} = 0$  for all x form an FI(P, R)-submodule of I(P, R) denoted by Z(P, R). Consequently,  $FZ(P, R) := Z(P, R) \cap FI(P, R)$  is an ideal of FI(P, R).

### Proposition 1.31

The *R*-module admits the decomposition  $I(P, R) = D(P, R) \oplus Z(P, R)$ . Consequently,  $FI(P, R) = D(P, R) \oplus FZ(P, R)$  as an *R*-module.

Universidad

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Jordan isomorphisms of FI(P, R)



Cádiz 2018 24 / 41

Jordan Isomorphisms of FI(P, R)

Mykola Khrypchenko (UFSC)

# The subalgebra $\tilde{I}(P, R)$

### Definition 2.1

Denote by  $\tilde{I}(P, R)$  the subalgebra of FI(P, R) consisting of the finite sums  $\alpha = \sum_{x \leq y} \alpha_{xy} e_{xy}$ .

### Definition 2.2

We introduce  $\tilde{D}(P, R) = \tilde{I}(P, R) \cap D(P, R)$  and  $\tilde{Z}(P, R) = \tilde{I}(P, R) \cap Z(P, R)$ .

### Proposition 2.3

The subset  $\tilde{D}(P, R) = \tilde{I}(P, R) \cap D(P, R)$  is a subalgebra of  $\tilde{I}(P, R)$  and  $\tilde{Z}(P, R) = \tilde{I}(P, R) \cap Z(P, R)$  is an ideal of  $\tilde{I}(P, R)$ . Moreover,  $\tilde{I}(P, R) = \tilde{D}(P, R) \oplus \tilde{Z}(P, R)$ , as an *R*-module.

Mykola Khrypchenko (UFSC)

イロト イ理ト イヨト イヨ

# The restriction of a Jordan isomorphism to $\tilde{I}(P,R)$

- $(X, \leq)$ , an arbitrary (non-necessarily locally finite) poset;
- R is a commutative 2-torsionfree unital ring;
- A an associative R-algebra;
- $\varphi$  a Jordan homomorphism from FI(P, R) to A.

### Proposition 2.4

The restriction of  $\varphi$  to  $\tilde{l}(P, R)$  is a Jordan homomorphism  $\tilde{l}(P, R) \rightarrow A$ . The proof of Theorem 2.1 from [1] works in this case, resulting that the *R*-linear maps

$$\psi(e_{xy}) = \varphi(e_x)\varphi(e_{xy})\varphi(e_y),$$
  
$$\theta(e_{xy}) = \varphi(e_y)\varphi(e_{xy})\varphi(e_x)$$

which are, respectively, a homomorphism and an anti-homomorphism  $\tilde{I}(P, R) \rightarrow A$ . Moreover,  $\varphi|_{\tilde{I}(P,R)}$  is the near-sum of  $\psi$  and  $\theta$  with respect to the subalgebra  $\tilde{D}(P, R)$  and the ideal  $\tilde{Z}(P, R)$  of  $\tilde{I}(P, R)$ .

### Problem 2.5

Can  $\psi$  and  $\theta$  be extended to a homomorphism and an anti-homomorphism  $FI(P, R) \rightarrow A$ , respectively?

### Problem 2.6

Will  $\varphi$  be the near-sum of the extensions of  $\psi$  and  $\theta$  with respect to D(P, R) and Z(P, R)?



# Key lemmas

•  $\varphi: FI(P, R) \rightarrow A$  a Jordan homomorphism.

### Lemma 2.7

For any  $f \in FI(P, R)$  one has

$$\forall x < y : \ \alpha_{xy}\varphi(e_{xy}) = \varphi(e_x)\varphi(\alpha)\varphi(e_y) + \varphi(e_y)\varphi(\alpha)\varphi(e_x), \\ \forall x : \ \alpha_{xx}\varphi(e_x) = \varphi(e_x)\varphi(\alpha)\varphi(e_x).$$

#### Lemma 2.8

Let  $\varphi$  be bijective. Then, given  $a, b \in A$ , one has a = b is and only if

$$\begin{cases} \forall x < y : & \varphi(e_x) a \varphi(e_y) + \varphi(e_y) a \varphi(e_x) = \varphi(e_x) b \varphi(e_y) + \varphi(e_y) b \varphi(e_x), \\ \forall x : & \varphi(e_x) a \varphi(e_x) = \varphi(e_x) b \varphi(e_x). \end{cases}$$

<ロ> (日) (日) (日) (日) (日)

# • $\varphi$ a Jordan isomorphism from FI(P, R) to A.

### Proposition 2.9

Let  $\varphi : FI(P, R) \to A$  be a Jordan isomorphism. Then  $\varphi|_{D(P,R)}$  is a homomorphism (and an anti-homomorphism at the same time).



Mykola Khrypchenko (UFSC)

# An extension of $\psi$

•  $\varphi$  a Jordan isomorphism from FI(P, R) to A.

### Lemma 2.10

Given  $\alpha \in FZ(P, R)$  and  $x \leq y$ , define

$$\alpha'_{xy} = \varphi^{-1}(\varphi(e_x)\varphi(\alpha)\varphi(e_y))_{xy}.$$

Then  $\alpha' \in FZ(P, R)$ .

### Definition 2.11

Given  $\alpha \in FZ(P, R)$  and  $x \leq y$ , set  $\tilde{\psi}(\alpha) = \varphi(\alpha')$ . In the general situation, when  $\alpha \in FI(P, R)$ , write  $\alpha = \alpha_D + \alpha_Z$  and thus set  $\tilde{\psi}(\alpha) = \varphi(\alpha_D) + \tilde{\psi}(\alpha_Z)$ .

### Lemma 2.12

The map  $\tilde{\psi}$  is an R-linear extension of  $\psi$ .

Mykola Khrypchenko (UFSC)

### Lemma 2.13

If  $\alpha \in D(P, R)$  and  $\beta \in FZ(P, R)$ , then  $\tilde{\psi}(\alpha\beta) = \tilde{\psi}(\alpha)\tilde{\psi}(\beta)$ . Similarly, if  $\alpha \in FZ(P, R)$  and  $\beta \in D(P, R)$ , then  $\tilde{\psi}(\alpha\beta) = \tilde{\psi}(\alpha)\tilde{\psi}(\beta)$ .

### Lemma 2.14

If 
$$\alpha, \beta \in FZ(P, R)$$
, then  $\tilde{\psi}(\alpha\beta) = \tilde{\psi}(\alpha)\tilde{\psi}(\beta)$ .

### Proposition 2.15

The map  $\tilde{\psi}$  is a homomorphism  $FI(P, R) \rightarrow A$ .



Image: Image:

< ∃ > <

# An extension of $\boldsymbol{\theta}$

•  $\varphi$  a Jordan isomorphism from FI(P, R) to A.

### Proposition 2.16

Given  $\alpha \in FZ(P, R)$  and  $x \leq y$ , define

$$\alpha_{xy}'' = \varphi^{-1}(\varphi(e_y)\varphi(\alpha)\varphi(e_x))_{xy}.$$

Then  $\alpha'' \in FZ(P, R)$ .

### Definition 2.17

Given  $\alpha \in FZ(P, R)$  and  $x \leq y$ , set  $\tilde{\psi}(\alpha) = \varphi(\alpha'')$ . In the general situation, when  $\alpha \in FI(P, R)$ , write  $\alpha = \alpha_D + \alpha_Z$  and thus set  $\tilde{\theta}(\alpha) = \varphi(\alpha_D) + \tilde{\theta}(\alpha_Z)$ .

### Lemma 2.18

The map  $\tilde{\theta}$  is an anti-homomorphism  $FI(P, R) \rightarrow A$  which extends  $\theta$ .

Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

### Theorem 2.19

Each Jordan isomorphism  $\varphi : FI(P, R) \to A$  is the near-sum of  $\tilde{\psi}$  and  $\tilde{\theta}$  with respect to the subalgebra D(P, R) and the ideal FZ(P, R).



Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

# Future work



Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

Cádiz 2018 34

2

・ロト ・聞 ト ・ ヨト ・ ヨト

### Problem 3.1

Prove the above mentioned result without the restriction that R is 2-torsionfree (i.e. do not use the result of Akkurt *et al* [1]).

### Problem 3.2

Generalize the description of Jordan isomorphism to the case, when P is quasi-ordered.



- P a poset;
- *R* connected.

### Problem 3.3

Is it true that each Jordan isomorphism  $FI(P, R) \rightarrow A$  is either an isomorphism or an anti-isomorphism?







Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

Cádiz 2018 3

2

・ロト ・聞 ト ・ ヨト ・ ヨト

# References I

AKKURT, E., AKKURT, M., AND BARKER, G. P. Jordan homomorphisms of the structural matrix algebras. Linear Multilinear Algebra 63, 12 (2015), 2518–2525.



### ANCOCHEA, G.

Le théorème de von Staudt en géométrie projective quaternionienne. J. Reine Angew. Math. 184 (1942), 193-198.

### ANCOCHEA, G.

On semi-automorphisms of division algebras. Ann. Math. (2) 48 (1947), 147–153.



Beidar, K. I., Brešar, M., and Chebotar, M. A. Jordan isomorphisms of triangular matrix algebras over a connected

commutative ring.

Linear Algebra Appl. 312, 1-3 (2000), 197-201.



# References II



# Benkovič, D.

Jordan homomorphisms on triangular matrices. *Linear Multilinear Algebra 53*, 5 (2005), 345–356.

# HERSTEIN, I. N.

Jordan homomorphisms.

Trans. Am. Math. Soc. 81 (1956), 331–341.

# HUA, L. K.

On the automorphisms of a field. Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 386–389.



JACOBSON, N., AND RICKART, C. E. Jordan homomorphisms of rings. *Trans. Amer. Math. Soc. 69* (1950), 479–502.



# References III



### KAPLANSKY, I.

Semi-automorphisms of rings. Duke Math. J. 14 (1947), 521–525.



KHRIPCHENKO, N. S., AND NOVIKOV, B. V. Finitary incidence algebras. Comm. Algebra 37, 5 (2009), 1670–1676.

 MOLNÁR, L., AND ŠEMRL, P.
Some linear preserver problems on upper triangular matrices. Linear Multilinear Algebra 45, 2-3 (1998), 189–206.



Smiley, M. F.

Jordan homomorphisms onto prime rings. Trans. Am. Math. Soc. 84 (1957), 426-429.



# **MUCHAS GRACIAS!**



Mykola Khrypchenko (UFSC)

Jordan Isomorphisms of FI(P, R)

Cádiz 2018 41 / 41

▲ # ↓ ★ ∃ ★