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Quasiordered sets

P a set;

≤ a binary relation on P.

Definition 1.1

The relation ≤ is called a quasiorder if ≤ is reflexive and transitive. The
pair (P,≤) is called a quasiordered set.

Synonyms: preorder (resp. preordered set).

Definition 1.2

A quasiorder ≤ is called a partial order, if it is antisymmetric. Then (P,≤)
is a partially ordered set (poset).
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Locally finite quasiordered sets

(P,≤) a quasiordered set.

Definition 1.3

(P,≤) is said to be locally finite, if for every pair x ≤ y the set

[x , y ] := {z ∈ P | x ≤ z ≤ y}

is finite.

Example 1.4

N with the usual partial order is locally finite, but N ∪ {∞} is not locally
finite.
R with the usual partial order is not locally finite.
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Incidence algebras

(P,≤) a locally finite quasiordered set;

R a commutative associative unital ring;

Definition 1.5

The incidence algebra of P over R is the set of functions

I (P,R) = {f : P × P → R | f (x , y) = 0, if x 6≤ y}

with the natural R-module structure and multiplication given by the
convolution

(fg)(x , y) =
∑

x≤z≤y
f (x , z)g(z , y).

It is associative (in general, non-commutative) unital R-algebra.
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Examples

The full matrix algebra Mn(R)

P = {1, . . . , n} with x ≤ y for all x , y ∈ P;

The upper triangular matrix algebra Tn(R)

P = {1, . . . , n} with the usual partial order;

Remark 1.6

If |P| = n, then I (P,R) is isomorphic to a subalgebra of Mn(R), and by
this reason I (P,R) is sometimes called a structural matrix algebra over R.
Moreover, if ≤ is a partial order, then I (P,R) can be identified with a
subalgebra of Tn(R).

Mykola Khrypchenko (UFSC) Jordan Isomorphisms of FI (P, R) Cádiz 2018 7 / 41



Alternative description of I (P ,R)

(P,≤) a locally finite quasiordered set;

R a commutative associative unital ring;

Remark 1.7

I (P,R) is the set of formal series {α =
∑

x≤y αxyexy | αxy ∈ R}, where
exy is a symbol and∑

x≤y
αxyexy

∑
x≤y

βxyexy

 =
∑
x≤y

 ∑
x≤z≤y

αxzβzy

 exy .

In particular, if P is finite, then I (P,R) is the semigroup algebra of
{exy | x ≤ y} ∪ {0}, where exyeuv = δyuexv .
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Jordan homomorphisms

A and B algebras over a commutative ring R;

ϕ : A→ B an R-linear map.

Definition 1.8

The map ϕ is called a Jordan homomorphism, if ϕ preserves the Jordan
product, i.e. ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b), where a ◦ b = ab + ba. A bijective
Jordan homomorphism is called a Jordan isomorphism.
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Examples of Jordan homomorphisms

Homomorphisms A→ B;

anti-homomorphisms A→ B;

sums of a homomorphism ψ : A→ B and an anti-homomorphism
θ : A→ B, provided that ψ(a)θ(b) = θ(a)ψ(b) = 0 for all a, b ∈ A.
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Jordan isomorphisms on simple algebras

Theorem 1.9 (Ancochea [2])

Each Jordan automorphism of the quaternion algebra Q is either an
automorphism or an anti-automorphism.

Theorem 1.10 (Ancochea [3])

Each Jordan automorphism of a division algebra D of characteristic
different from 2 is either an automorphism or an anti-automorphism.

Theorem 1.11 (Ancochea [3])

Each Jordan automorphism of a simple algebra A of characteristic different
from 2 is either an isomorphism or an anti-isomorphism.

In particular, this is true for the full matrix algebra Mn(D) over a division
ring D.
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Eliminating the restriction on the characteristic

Kaplansky and Hua considered linear maps ϕ : A→ A′ satisfying

ϕ(aba) = ϕ(a)ϕ(b)ϕ(a), (1)

ϕ(1A) = ϕ(1A′). (2)

If charA 6= 2, then (1) and (2) are equivalent to ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b)
for all a, b.

Theorem 1.12 (Hua [7])

An additive bijective map ϕ from a division ring D into itself satisfying (1)
and (2) is either an automorphism, or an anti-automorphism.

Theorem 1.13 (Kaplansky [9])

A linear bijective map ϕ between unital simple algebras A and A′ satisfying
(1) and (2) is either an isomorphism, or an anti-isomorphism.

If the charA 6= 2, this recovers the above mentioned results of Ancochea.
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Jordan homomorphisms on prime rings

R a ring of characteristic different from 2;

R ′ a prime ring of characteristic different from 2 and 3;

ϕ : R → R ′ is a Jordan homomorphism.

Theorem 1.14 (Herstein [6])

If ϕ is onto, then ϕ is either a homomorphism, or an anti-homomorphism.

Theorem 1.15 (Smiley [12])

The Herstein’s result holds for R ′ of characteristic 3 as well.
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Jordan homomorphisms Mn(R)→ A

By a Jordan homomorphism between two rings R and R ′ Jacobson and
Rickart meant an additive map ϕ : R → R ′ which satisfies

1 ϕ(a2) = ϕ(a)2,

2 ϕ(aba) = ϕ(a)ϕ(b)ϕ(a).

It follows from (1) that ϕ preserves the Jordan product. If R is
2-torsionfree, then the converse also holds, and (2) is also satisfied in this
case.

R an arbitrary unital ring;

n ≥ 2.

Theorem 1.16 (Jacobson-Rickart [8])

Each Jordan homomorphism of the rings Mn(R)→ A is the sum of a
homomorphism and an anti-homomorphism.
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Jordan automorphisms of Tn(C)

Theorem 1.17 (Molnár-Šemrl [11])

Each Jordan automorphism of Tn(C) is either an automorphism, or an
anti-automorphism.

Mykola Khrypchenko (UFSC) Jordan Isomorphisms of FI (P, R) Cádiz 2018 15 / 41



Jordan isomorphisms of Tn(R)

R a 2-torsionfree commutative unital ring;

n ≥ 2.

Theorem 1.18 (Beidar-Brešar-Chebotar [4])

The following conditions are equivalent:

1 R is connected (i.e. E (R) = {0, 1});

2 each Jordan isomorphism Tn(R)→ A is either an isomorphism, or an
anti-isomorphism.
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Near-sum

A = A0 ⊕ A1, as an R-module, where A0 is a subalgebra of A and A1

is an ideal of A;

ψ, θ : A→ B are a homomorphism and θ : A→ B is an
anti-homomorphism;

ψ|A0 = θ|A0 and ψ(a)θ(b) = θ(a)ψ(b) = 0 for all a, b ∈ A1.

Definition 1.19 (Benkovič [5])

The near-sum of ψ and θ (with respect to A0 and A1) is the R-linear map
ϕ : A→ B, which satisfies

1 ϕ|A0 = ψ|A0 = θ|A0 ;

2 ϕ|A1 = ψ|A1 + θ|A1 .

Proposition 1.20 (Benkovič [5])

The near-sum of a homomorphism and an anti-homomorphism is a Jordan
homomorphism.
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Jordan homomorphisms of Tn(R)

R a 2-torsionfree commutative unital ring;

n ≥ 2;

Dn(R) the subalgebra of Tn(R) consisting of the diagonal matrices;

Sn(R) the ideal of Tn(R) consisting of the strictly upper triangular
matrices.

Theorem 1.21 (Benkovič [5])

Each Jordan homomorphism ϕ : Tn(R)→ A is the near-sum of a
homomorphism ψ : Tn(R)→ A and an anti-homomorphism
θ : Tn(R)→ A with respect to Dn(R) and Sn(R).
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Jordan homomorphisms of I (P ,R)

R a 2-torsionfree commutative unital ring;

n ≥ 2;

(P,≤) either a finite poset, or a finite quasi-ordered set each of
whose equivalence classes contains at least 2 elements;

D(P,R) the subalgebra of I (P,R) consisting of the diagonal
elements;

S(P,R) the ideal of I (P,R) consisting of the elements with zero on
the diagonal.

Theorem 1.22 (Akkurt-Akkurt-Barker [1])

Each Jordan homomorphism ϕ : I (P,R)→ A is the near sum of a
homomorphism ψ : I (P,R)→ A and an anti-homomorphism
θ : I (P,R)→ A with respect to D(P,R) and S(P,R).
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Finitary incidence algebras

(P,≤) a (not necessarily locally finite) poset;

R a commutative associative unital ring;

Remark 1.23

I (P,R) is an R-module, but not an algebra, since the convolution αβ of
α, β ∈ I (P,R) may be undefined.

Definition 1.24 (Khripchenko and Novikov [10])

An element α =
∑

x≤y αxyexy ∈ I (P,R) is called a finitary series if for
every x ≤ y the set

{(u, v) | x ≤ u < v ≤ y , αuv 6= 0}

is finite.
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Finitary incidence algebras

Proposition 1.25 (Khripchenko and Novikov [10])

The set of finitary series, denoted by FI (P,R), forms an algebra under
convolution. It is called the finitary incidence algebra of P over R.
Moreover, I (P,R) is a bimodule over FI (P,R).
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Connection with incidence algebras

Remark 1.26

If P is locally finite, then I (P,R) = FI (P,R).

Theorem 1.27 (Khripchenko-Novikov [10])

If R is a field, then FI (P,R) ∼= FI (Q,R)⇒ P ∼= Q.

Corollary 1.28

If R is a field and P is not locally finite, then there is no locally finite Q,
such that FI (P,R) ∼= I (Q,R).
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D(P ,R) and Z (P ,R)

Definition 1.29

An element α ∈ FI (P,R) is said to be diagonal, if αxy = 0 for x 6= y .
Diagonal elements form a commutative subalgebra of FI (P,R), which we
denote by D(P,R).

Definition 1.30

The elements α ∈ I (P,R) satisfying αxx = 0 for all x form an
FI (P,R)-submodule of I (P,R) denoted by Z (P,R). Consequently,
FZ (P,R) := Z (P,R) ∩ FI (P,R) is an ideal of FI (P,R).

Proposition 1.31

The R-module admits the decomposition I (P,R) = D(P,R)⊕ Z (P,R).
Consequently, FI (P,R) = D(P,R)⊕ FZ (P,R) as an R-module.
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Jordan isomorphisms of FI (P ,R)
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The subalgebra Ĩ (P ,R)

Definition 2.1

Denote by Ĩ (P,R) the subalgebra of FI (P,R) consisting of the finite sums
α =

∑
x≤y αxyexy .

Definition 2.2

We introduce D̃(P,R) = Ĩ (P,R) ∩ D(P,R) and
Z̃ (P,R) = Ĩ (P,R) ∩ Z (P,R).

Proposition 2.3

The subset D̃(P,R) = Ĩ (P,R) ∩ D(P,R) is a subalgebra of Ĩ (P,R) and
Z̃ (P,R) = Ĩ (P,R) ∩ Z (P,R) is an ideal of Ĩ (P,R). Moreover,
Ĩ (P,R) = D̃(P,R)⊕ Z̃ (P,R), as an R-module.
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The restriction of a Jordan isomorphism to Ĩ (P ,R)

(X ,≤), an arbitrary (non-necessarily locally finite) poset;
R is a commutative 2-torsionfree unital ring;
A an associative R-algebra;
ϕ a Jordan homomorphism from FI (P,R) to A.

Proposition 2.4

The restriction of ϕ to Ĩ (P,R) is a Jordan homomorphism Ĩ (P,R)→ A.
The proof of Theorem 2.1 from [1] works in this case, resulting that the
R-linear maps

ψ(exy ) = ϕ(ex)ϕ(exy )ϕ(ey ),

θ(exy ) = ϕ(ey )ϕ(exy )ϕ(ex)

which are, respectively, a homomorphism and an anti-homomorphism
Ĩ (P,R)→ A. Moreover, ϕ|Ĩ (P,R) is the near-sum of ψ and θ with respect

to the subalgebra D̃(P,R) and the ideal Z̃ (P,R) of Ĩ (P,R).
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Natural questions

Problem 2.5

Can ψ and θ be extended to a homomorphism and an anti-homomorphism
FI (P,R)→ A, respectively?

Problem 2.6

Will ϕ be the near-sum of the extensions of ψ and θ with respect to
D(P,R) and Z (P,R)?
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Key lemmas

ϕ : FI (P,R)→ A a Jordan homomorphism.

Lemma 2.7

For any f ∈ FI (P,R) one has

∀x < y : αxyϕ(exy ) = ϕ(ex)ϕ(α)ϕ(ey ) + ϕ(ey )ϕ(α)ϕ(ex),

∀x : αxxϕ(ex) = ϕ(ex)ϕ(α)ϕ(ex).

Lemma 2.8

Let ϕ be bijective. Then, given a, b ∈ A, one has a = b is and only if{
∀x < y : ϕ(ex)aϕ(ey ) + ϕ(ey )aϕ(ex) = ϕ(ex)bϕ(ey ) + ϕ(ey )bϕ(ex),

∀x : ϕ(ex)aϕ(ex) = ϕ(ex)bϕ(ex).
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ψ and θ on D(P ,R)

ϕ a Jordan isomorphism from FI (P,R) to A.

Proposition 2.9

Let ϕ : FI (P,R)→ A be a Jordan isomorphism. Then ϕ|D(P,R) is a
homomorphism (and an anti-homomorphism at the same time).
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An extension of ψ

ϕ a Jordan isomorphism from FI (P,R) to A.

Lemma 2.10

Given α ∈ FZ (P,R) and x ≤ y, define

α′xy = ϕ−1(ϕ(ex)ϕ(α)ϕ(ey ))xy .

Then α′ ∈ FZ (P,R).

Definition 2.11

Given α ∈ FZ (P,R) and x ≤ y , set ψ̃(α) = ϕ(α′). In the general
situation, when α ∈ FI (P,R), write α = αD + αZ and thus set
ψ̃(α) = ϕ(αD) + ψ̃(αZ ).

Lemma 2.12

The map ψ̃ is an R-linear extension of ψ.
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ψ̃ is a homomorphism

Lemma 2.13

If α ∈ D(P,R) and β ∈ FZ (P,R), then ψ̃(αβ) = ψ̃(α)ψ̃(β). Similarly, if
α ∈ FZ (P,R) and β ∈ D(P,R), then ψ̃(αβ) = ψ̃(α)ψ̃(β).

Lemma 2.14

If α, β ∈ FZ (P,R), then ψ̃(αβ) = ψ̃(α)ψ̃(β).

Proposition 2.15

The map ψ̃ is a homomorphism FI (P,R)→ A.
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An extension of θ

ϕ a Jordan isomorphism from FI (P,R) to A.

Proposition 2.16

Given α ∈ FZ (P,R) and x ≤ y, define

α′′xy = ϕ−1(ϕ(ey )ϕ(α)ϕ(ex))xy .

Then α′′ ∈ FZ (P,R).

Definition 2.17

Given α ∈ FZ (P,R) and x ≤ y , set ψ̃(α) = ϕ(α′′). In the general
situation, when α ∈ FI (P,R), write α = αD + αZ and thus set
θ̃(α) = ϕ(αD) + θ̃(αZ ).

Lemma 2.18

The map θ̃ is an anti-homomorphism FI (P,R)→ A which extends θ.
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The decomposition of ϕ

Theorem 2.19

Each Jordan isomorphism ϕ : FI (P,R)→ A is the near-sum of ψ̃ and θ̃
with respect to the subalgebra D(P,R) and the ideal FZ (P,R).
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Future work
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Dropping the assumptions on P and R

Problem 3.1

Prove the above mentioned result without the restriction that R is
2-torsionfree (i.e. do not use the result of Akkurt et al [1]).

Problem 3.2

Generalize the description of Jordan isomorphism to the case, when P is
quasi-ordered.
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Generalizing the result by Beidar-Brešar-Chebotar

P a poset;

R connected.

Problem 3.3

Is it true that each Jordan isomorphism FI (P,R)→ A is either an
isomorphism or an anti-isomorphism?
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