On ternary algebras and a (new) ternary generalization of Jordan algebras

Paulo Saraiva ${ }^{1}$
${ }^{1}$ CeBER, CMUC
University of Coimbra, Portugal

The First International Workshop
Non-associative Algebras in Cádiz, 2018-02-21

Outline

（1）Introduction
－n－ary algebras
－Filippov algebras
（2）n－ary Mal＇tsev algebras
－Building the notion of n－ary Mal＇tsev algebra
－First results
－Ternary Mal＇tsev algebras arising on composition algebras
（3）n－ary Jordan algebras
－Jordan algebras and its generalizations．The notion of n－ary Jordan algebra
－Ternary algebras with a generalized multiplication
－The simple ternary Jordan algebra \mathbb{A}
－Other examples
n－ary algebras

Outline

（1）Introduction
－n－ary algebras
－Filippov algebras
（2）
n－ary Mal＇tsev algebras
－Building the notion of n－ary Mal＇tsev algebra
－First results
－Ternary Mal＇tsev algebras arising on composition algebras

3n－ary Jordan algebras
－Jordan algebras and its generalizations．The notion of n－ary Jordan algebra
－Ternary algebras with a generalized multiplication
－The simple ternary Jordan algebra \mathbb{A}
－Other examples

Definition (Kurosh, 1969)

Let \mathcal{A} be a vector space over a field \mathbb{F}. \mathcal{A} is said to be an Ω-algebra over \mathbb{F} if Ω is a system of multilinear algebraic operations defined on \mathcal{A},

$$
\Omega=\left\{\omega_{i}:\left|\omega_{i}\right|=n_{i} \in \mathbb{N}, i \in I\right\},
$$

where $\left|\omega_{i}\right|$ denotes the arity of ω_{i}.
Remark
Hereinafter, we write

$$
\left[x_{1}, \ldots, x_{n_{i}}\right]_{i}
$$

instead of

$$
\omega_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)
$$

Definition

An Ω-algebra \mathcal{A} is said to be anticommutative if all n_{i}-ary operations ($n_{i} \geq 2$), $[., \ldots, .]_{i} \in \Omega$ are anticommutative, that is, if

$$
\left[x_{1}, \ldots, x_{n_{i}}\right]_{i}=\operatorname{sgn}(\sigma)\left[x_{\sigma(1)}, \ldots, x_{\sigma\left(n_{i}\right)}\right]_{i}
$$

for all $x_{1}, \ldots, x_{n_{i}} \in \mathcal{A}, \sigma \in \mathcal{S}_{n}$ (the symmetric permutation group).

Remark

If $\operatorname{char}(\mathbb{F}) \neq 2,[., \ldots, .]_{i} \in \Omega$ is anticommutative if and only if it is null whenever a pair of its entries are equal.

Examples

- n-ary Filippov algebras (formerly known as n-Lie algebras);
- n-ary Mal'tsev algebras (2nd part of the talk).

Definition

An Ω-algebra \mathcal{A} is said to be totally commutative if all n_{i}-ary operations $\left(n_{i} \geq 2\right),[., \ldots,]_{i} \in \Omega$ are totally commutative, that is, if

$$
\left[x_{1}, \ldots, x_{n_{i}}\right]_{i}=\left[x_{\sigma(1)}, \ldots, x_{\sigma\left(n_{i}\right)}\right]_{i}
$$

for all $x_{1}, \ldots, x_{n_{i}} \in \mathcal{A}, \sigma \in \mathcal{S}_{n}$.

Examples

- n-ary Jordan algebras are totally commutative (3rd part of the talk);
- Jordan triple systems are only partially commutative.

Definition

An Ω-algebra \mathcal{A} is said to be totally associative if all n_{i}-ary operations ($n_{i} \geq 2$), $[., \ldots,]_{i} \in \Omega$ are totally associative, that is, if

$$
\begin{aligned}
& {\left[x_{1}, \ldots,\left[x_{j}, \ldots, x_{j+n_{i}-1}\right], \ldots x_{2 n_{i}-1}\right]_{i}=} \\
& {\left[x_{1}, \ldots,\left[x_{k}, \ldots, x_{k+n_{i}-1}\right], \ldots x_{2 n_{i}-1}\right]_{i},}
\end{aligned}
$$

for all $j, k \in\left\{1, \ldots, n_{i}\right\}, x_{1}, \ldots, x_{2 n_{i}-1} \in \mathcal{A}$.

Ω-algebras with more than one operation

Example

A Sabinin algebra \mathcal{A} is a vector space with two infinite systems of multilinear operators:

$$
\Omega_{1}=\left\{\left\langle x_{1}, \ldots, x_{n} ; y, z\right\rangle\right\} \text { the Mikheev-Sabinin brackets }
$$

abstract versions of the covariant derivatives $\nabla_{x_{1}} \ldots \nabla_{x_{n}} T(x, y)$ of the torsion tensor of the canonical connection of a loop satisfying certain identities (see Mostovoy, Perez-Izquierdo and Shestakov, 2014);

$$
\Omega_{2}=\left\{\left[x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right]\right\} n \geq 1, m \geq 2
$$

Ω－algebras with more than one operation

Example

A Poisson algebra $(\mathcal{A},\{.,\},. \cdot)$ is a vector space \mathcal{A} with two multilinear operators such that：
（1）$(\mathcal{A},\{.,\}$.$) is a Lie algebra；$
（2）(\mathcal{A}, \cdot) is commutative and associative；
（3）$\{a \cdot b, c\}=a \cdot\{b, c\}+\{a, c\} \cdot b$ ．（the Leibniz identity）
If，in addition，

$$
\{x, y\} \cdot\{z, u\}+\{z, x\} \cdot\{y, u\}+\{y, z\} \cdot\{x, u\}=0
$$

is satisfied，$(\mathcal{A},\{.,\},. \cdot)$ is said to be a Poisson－Farkas algebra （Farkas，1998）．

Let \mathcal{A} be an Ω-algebra over \mathbb{F}. For every multilinear n_{i}-ary multiplication

$$
[., \ldots,]_{i} \in \Omega,
$$

for each $j=1, \ldots, n$, and for all $x_{1}, \ldots, \hat{x}_{j}, \ldots, x_{n_{i}} \in \mathcal{A}$, define the multiplication operator

$$
M_{j}\left(x_{1}, \ldots, \hat{x}_{j}, \ldots, x_{n_{i}}\right)
$$

as the linear mapping $\quad y \mapsto\left[x_{1}, \ldots, y, \ldots, x_{n_{i}}\right]_{j}$.

Example

Given an Ω-algebra \mathcal{A} with one n-ary multiplication, [., ...,.], for each $x=\left(x_{2}, \ldots, x_{n}\right), x_{i} \in \mathcal{A}$, the operator $R_{x}=R_{\left(x_{2}, \ldots, x_{n}\right)}$ defined by

$$
y \mapsto R_{x}(y)=\left[y, x_{2}, \ldots, x_{n}\right]
$$

is called a right multiplication operator.

Definition

Let \mathcal{A} be an Ω-algebra over \mathbb{F}.
(1) The multiplication algebra of \mathcal{A} is the subalgebra $M=M(\mathcal{A})$ of the linear transformation algebra $\operatorname{End}_{\mathbb{F}}(\mathcal{A})$ generated by all multiplications and by $l d_{\mathcal{A}}$.
(2) A subspace \mathcal{I} of \mathcal{A} that is invariant under the $M(\mathcal{A})$ is called an ideal of \mathcal{A}.
(3) The square of \mathcal{A} is the following subalgebra $\mathcal{A}^{2}=\langle M \mathcal{A}\rangle_{\mathbb{F}}$.
(9) An Ω-algebra \mathcal{A} is said to be simple if $\mathcal{A}^{2} \neq 0$ and \mathcal{A} contains no ideals distinct from 0 and \mathcal{A}.
(5) The centroid of \mathcal{A} is the following subalgebra of $\operatorname{End}_{\mathbb{F}}(\mathcal{A})$:
$\Gamma(\mathcal{A})=\left\{\phi \in \operatorname{End}_{F}(\mathcal{A}): \phi\left(\left[a_{1}, \ldots, a_{n_{i}}\right]_{i}\right)=\left[a_{1}, \ldots, \phi\left(a_{j}\right), \ldots, a_{n_{i}}\right]_{i}\right.$, for all $a_{1}, \ldots, a_{n_{i}} \in \mathcal{A}, j \in N_{n_{i}}$
$\Gamma(\mathcal{A})$ is an associative algebra with unity over \mathbb{F}.

Theorem (Pozhidaev, 1999)

If \mathcal{A} is a simple Ω-algebra, then $\Gamma(\mathcal{A})$ is a field.

Definition

An Ω-algebra \mathcal{A} is said to be central if $\Gamma(\mathcal{A})=\mathbb{F}$.

Remark

Hereinafter, all Ω-algebras considered will have only one multilinear n-ary operation. From now on, we will say
"an n-ary algebra"
instead of
"an Ω-algebra with one n-ary operation".

Definition

Given an arbitrary class of n-ary algebras, $\mathcal{A}=(\mathbb{V},[., \ldots,]$.$) ,$ $n>2$, let us fix $a \in \mathbb{V}$, and for each $i \in\{1, \ldots, n\}$, define an ($n-1$)-ary algebra denoted by $\mathcal{A}_{i, a}$, by putting

$$
\left[x_{2}, \ldots, x_{n}\right]_{i, a}=[x_{2}, \ldots, \underbrace{a}_{i-\text { th entry }}, \ldots, x_{n}], x_{2}, \ldots, x_{n} \in \mathbb{V}
$$

Each algebra $\mathcal{A}_{i, a}$, defined on \mathbb{V}, is called a reduced algebra of \mathcal{A}.

Remark

If $[., \ldots,$.$] is anticommutative or totally commutative, it is enough$ to write \mathcal{A}_{a} and

$$
\left[x_{2}, \ldots, x_{n}\right]_{a}=\left[a, x_{2}, \ldots, x_{n}\right], x_{2}, \ldots, x_{n} \in \mathbb{V}
$$

Example

- reduced algebras of n-ary totally (anti)commutative algebras are ($n-1$)-ary totally (anti)commutative algebras;
- reduced algebras of n-ary totally associative algebras are ($n-1$)-ary totally associative algebras.

Definition

Let $\mathcal{A}=(\mathbb{V},[., \ldots,]$.$) be an n$-ary algebra. A linear map $D: \mathbb{V} \longrightarrow \mathbb{V}$ is said to be a derivation of \mathcal{A} if it satisfies

$$
D\left(\left[x_{1}, \ldots, x_{n}\right]\right)=\sum_{i=1}^{n}\left[x_{1}, \ldots, D\left(x_{i}\right), \ldots, x_{n}\right], x_{1}, \ldots, x_{n} \in \mathbb{V}
$$

Definition (Kaygorodov, 2014)
Let $\mathcal{A}=(\mathbb{V},[., \ldots,]$.$) be an n$-ary algebra. An $(n+1)$-ary derivation of \mathcal{A} is a collection

$$
\left(f_{0}, \ldots, f_{n}\right) \in \operatorname{End}_{\mathbb{F}}(\mathbb{V})^{n+1}
$$

such that $f_{0}\left(\left[x_{1}, \ldots, x_{n}\right]\right)=\sum^{n}\left[x_{1}, \ldots, f_{i}\left(x_{i}\right), \ldots, x_{n}\right], x_{1}, \ldots, x_{n} \in \mathbb{V}$.

Remark

If $\psi_{1}, \ldots, \psi_{n} \in \Gamma(\mathcal{A})$ and $D \in \operatorname{Der}(\mathcal{A})$, then

$$
\left(\sum \psi_{i}, \psi_{1}, \ldots, \psi_{n}\right) \text { and }(D, \ldots, D)
$$

are $(n+1)$-derivations of \mathcal{A}. These and their linear combinations are said to be trivial.

Definition

Let \mathcal{A} be an n-ary anticommutative algebra over a field \mathbb{F}, with multiplication [.,...,.]. Let \mathcal{R} and $\operatorname{Lie}(\mathcal{R})$ be, resp., the vector space and the Lie algebra generated by the right multiplication operators by elements of \mathcal{A}. A quasi-derivation of \mathcal{A} is every operator $D: \mathcal{A} \longrightarrow \mathcal{A}$ such that

$$
\left[D, R_{x}\right] \in \operatorname{Lie}(\mathcal{R}), \text { for all } R_{x} \in \operatorname{Lie}(\mathcal{R})
$$

The set of all quasi-derivations of \mathcal{A} is denoted by $\mathcal{Q} \operatorname{Der}(\mathcal{A})$.

$$
\text { We have: } \operatorname{Der}(\mathcal{A}) \subseteq \mathcal{Q} \operatorname{Der}(\mathcal{A}) \subseteq \operatorname{End}_{\mathbb{F}}(\mathcal{A})
$$

Filippov algebras

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras

On-ary Jordan algebras

- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Definition (Filippov, 1985)

Let \mathcal{L} be an algebra over \mathbb{F} equipped with a mutilinear n-ary ($n \geq 2$) multiplication $[., \ldots,.] . \mathcal{L}$ is said to be an n-ary Filippov algebra (also known as n-Lie algebra) if it is anticommutative and if, for every $x_{1}, \ldots, x_{n}, y_{2}, \ldots, y_{n} \in \mathcal{L}$,

$$
\begin{equation*}
\left[\left[x_{1}, \ldots, x_{n}\right], y_{2}, \ldots, y_{n}\right]=\sum_{i=1}^{n}\left[x_{1}, \ldots,\left[x_{i}, y_{2}, \ldots, y_{n}\right], \ldots, x_{n}\right] \tag{1}
\end{equation*}
$$

Remark

(1) (1) is called generalized Jacobi identity (GJI, for short);
(2) An n-ary Filippov algebra is said to be perfect if it coincides with its square;
(3) An n-ary algebra whose multilinear multiplication satisfies the GJI is called an n-ary Leibniz algebra.

Example (Filippov, 1985)

Let L be a real Euclidean $(n+1)$-dimensional ($n \geq 2$) vector space equipped with $[., \ldots,$.$] , denoting the vector cross product of n$ elements in L. Fix an o.n. basis $\mathcal{E}_{n+1}=\left\{e_{1}, \ldots, e_{n+1}\right\}$ of L, we have:

$$
\left[x_{1}, \ldots, x_{n}\right]=\left\lvert\, \begin{array}{ccccc}
x_{11} & x_{12} & \ldots & x_{1 n} & e_{1} \\
x_{21} & x_{22} & \ldots & x_{2 n} & e_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{(n+1) 1} & x_{(n+1) 2} & \ldots & x_{(n+1) n} & e_{n+1}
\end{array}\right.
$$

where for $i \in\{1, \ldots, n\}, x_{i}=\left(x_{1 i}, x_{2 i}, \ldots, x_{(n+1) i}\right)$ on the fixed basis.

Example (cont.)

By n-linearity the following multiplication table is enough to define $[\cdot, \cdots, \cdot]:$

$$
\begin{equation*}
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{n+1+i} e_{i}, \quad i \in\{1, \ldots, n+1\} \tag{2}
\end{equation*}
$$

$\hat{e}_{i}: e_{i}$ omitted. The other products are null or obtained from (2) by anticommutativity. $L:=A_{n+1}$ is the n-ary Filippov algebra of vector cross product (a natural generalization of the binary vector cross product in \mathbb{R}^{3}).

Classification of anticommutative n-ary algebras of dim. $\leq(n+1)$

Admit that $\operatorname{char}(\mathbb{F})=0$.

- Up to isomorphism, there is only one n-dimensional n-ary anticommutative algebra:

$$
A_{n}: \quad\left[e_{1}, \ldots, e_{n}\right]=e_{1}
$$

A_{n} is a Filippov algebra and any n-dimensional n-ary anticommutative algebra is isomorphic to A_{n}.

- Up to isomorphism, there is only one perfect ($n+1$)-dimensional n-ary Filippov algebra:

$$
A_{n+1}: \quad\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right]=(-1)^{n+1+i} e_{i}
$$

- Let L be an n-ary $(n+1)$-dimensional algebra with basis $\left\{e_{1}, \ldots, e_{n+1}\right\}$. Let

$$
e^{i}=(-1)^{n+1+i}\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n+1}\right], i=1, \ldots, n+1
$$

Then, the multiplication in L is defined by a square matrix B such that:

$$
\left(e^{1}, \ldots, e^{n+1}\right)=\left(e_{1}, \ldots, e_{n+1}\right) B .
$$

In this case, L is an n-ary Filippov algebra iff B is symmetric.

Theorem (Filippov, 1985)

The reduced algebras of n-ary Filippov algebras are $(n-1)$-ary Filippov algebras.

Theorem

The reduced algebras of n-ary Leibniz algebras are ($n-1$)-ary Leibniz algebras.

Filippov algebras and Nambu Mechanics

- The theory of n-ary Filippov algebras has a close relation with Nambu Mechanics (Nambu, 1973): a proposal of generalization to obtain generalized Hamiltonian equations of the movement.
- Specifically, Filipov algebras are the implicit algebraic concept underlying this theory.
- In Nambu Mechanics the Nambu parenthesis $\{\cdot, \cdot, \cdot\}$ is defined in the Euclidian phase space \mathbb{R}^{3} by the determinant

$$
\left\{f_{1}, f_{2}, f_{3}\right\}=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} \\
\frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y} & \frac{\partial f_{3}}{\partial z}
\end{array}\right|=\left|\frac{\partial\left(f_{1}, f_{2}, f_{3}\right)}{\partial(x, y, z)}\right|
$$

- This multiplication is trilinear and anticommutative and generalizes the Poisson parenthesis to the ternary case.
- It also satisfies a so-called fundamental identity:
$\left\{\left\{g, h, f_{1}\right\}, f_{2}, f_{3}\right\}+\left\{f_{1},\left\{g, h, f_{2}\right\}, f_{3}\right\}+\left\{f_{1}, f_{2},\left\{g, h, f_{3}\right\}\right\}=\left\{g, h,\left\{f_{1}, f_{2}, f_{3}\right\}\right\}$
which is a ternary version of the GJI.

Building ternary Filippov algebras

In recent works (Pozhidaev, 2015 and 2017):

- simple ternary Filippov algebras have been built by means of Poisson algebras and Poisson-Farkas algebras;
- ternary Filippov superalgebras have been built by means of Poisson superalgebras and Poisson-Farkas superalgebras.

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras

3n-ary Jordan algebras

- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Definition

Let \mathbb{V} be a finite dimensional vector space over a field \mathbb{F}, equipped with a non-singular bilinear symmetric form $\langle.,$.$\rangle . We say that \mathbb{V}$ is an n-ary algebra with vector cross product $(n \geq 2)$ if it can be defined an n-ary multilinear operation $[., \ldots,]:. \mathbb{V} \times \ldots \times \mathbb{V} \longrightarrow \mathbb{V}$ satisfying
(1) $\left\langle\left[x_{1}, \ldots, x_{n}\right], x_{i}\right\rangle=0$, for all $x_{i} \in \mathbb{V}, i=1, \ldots, n$;
(2) $\left\langle\left[x_{1}, \ldots, x_{n}\right],\left[x_{1}, \ldots, x_{n}\right]\right\rangle=\operatorname{det}\left(\left\langle x_{i}, x_{j}\right\rangle\right)$, for all $x_{i} \in \mathbb{V}$, $i=1, \ldots, n$.

Theorem (Classification Th. of n-ary algebras with v.c.p., Brown and Gray, 1967)

The only possible n-ary vector cross product algebras are:
(1) Case $n=2$:

- the simple 3-dimensional Lie algebra sl(2)
- the simple 7-dimensional Mal'tsev algebra C_{7};
(2) Case $n \geq 3$:
- the simple $(n+1)$-dimensional Filippov (n-ary) algebras A_{n+1} (n-ary analogues of sl(2));
- an exceptional 8-dimensional ternary algebra, M_{8}, arising on composition algebras.

Question

Is it possible to generalize the notion of Mal'tsev algebra in such a way that it includes M_{8} in the ternary case?

Definition

An algebra \mathcal{A} over a field \mathbb{F} is called a Mal'tsev algebra if it satisfies
(1) $x^{2}=0$, for all $x \in \mathcal{A}$;
(2) $J(x, y, x z)=J(x, y, z) x$, for all $x, y, z \in \mathcal{A}$, (Mal'tsev identity) where $J(x, y, z)=(x y) z+(y z) x+(z x) y$ is the Jacobian.

Rewriting the Mal'tsev identity, we have:

$$
\begin{equation*}
(z x)(x y)+(z(x y)) x=((z x) x) y-((z y) x) x \tag{3}
\end{equation*}
$$

which is equivalent in $\operatorname{Ass}(\mathcal{R})$ to

$$
\begin{equation*}
R_{x} R_{x y}+R_{x y} R_{x}=R_{x}^{2} R_{y}-R_{y} R_{x}^{2} \tag{4}
\end{equation*}
$$

where $\operatorname{Ass}(\mathcal{R})$ is the associative algebra generated by the right multinlication onerators $R \cdot a \longmapsto a x$

Let's look at a generalization process of the Jacobi identity. This can be written as

$$
R_{y} R_{z}+R_{z} R_{x}=R_{[x, y]}=R_{x R_{y}}
$$

and thus, in the ternary case, we have

$$
R_{y, z} R_{u, v}+R_{u, v} R_{x, y}=R_{y R_{u, v}, z}+R_{y, z R_{u, v}}
$$

where $x R_{y, z}=R_{y, z}(x)=[x, y, z]$.
Therefore, (4) can be analogously generalized to an algebra \mathcal{A} with an n-ary multiplication:

$$
R_{x} \sum_{i=1}^{n} R_{x_{2}, \ldots, x_{i} R_{y}, \ldots, x_{n}}+\sum_{i=1}^{n} R_{x_{2}, \ldots, x_{i} R_{y}, \ldots, x_{n}} R_{x}=R_{x}^{2} R_{y}-R_{y} R_{x}^{2}
$$

Definition (Pozhidaev, 2001)

An n-ary algebra $\mathcal{A}=(\mathbb{V},[., \ldots,]$.$) over a field \mathbb{F}$ is said to be an n-ary Mal'tsev algebra if its multilinear multiplication is anticommutative and it satisfies

$$
\begin{gathered}
\sum_{i=1}^{n}\left[\left[z, x_{2}, \ldots, x_{n}\right], x_{2}, \ldots,\left[x_{i}, y_{2}, \ldots, y_{n}\right], \ldots, x_{n}\right]+ \\
\sum_{i=1}^{n}\left[\left[z, x_{2}, \ldots,\left[x_{i}, y_{2}, \ldots, y_{n}\right], \ldots, x_{n}\right], x_{2}, \ldots, x_{n}\right] \\
=\left[\left[\left[z, x_{2}, \ldots, \ldots, x_{n}\right], x_{2}, \ldots, x_{n}\right], y_{2}, \ldots, y_{n}\right]-\left[\left[\left[z, y_{2}, \ldots, \ldots, y_{n}\right], x_{2}, \ldots, x_{n}\right], x_{2}, \ldots, x_{n}\right] .
\end{gathered}
$$

This identity is known as the Generalized Mal'tsev identity (GMI).

First results

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras
- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

First results

The GMI is equivalent to

$$
-J\left(z R_{x}, x_{2}, \ldots, x_{n} ; y_{2}, \ldots, y_{n}\right)=J\left(z, x_{2}, \ldots, x_{n} ; y_{2}, \ldots, y_{n}\right) R_{x}
$$

where $J\left(x_{1}, x_{2}, \ldots, x_{n} ; y_{2}, \ldots, y_{n}\right)=\operatorname{LHS}(G J I)-R H S(G J I)$.

Lemma (Pozhidaev, 2001)

Every n-ary Filippov algebra is an n-ary Mal'tsev algebra.

Generalizing the fact that every Lie algebra is a Mal'tsev algebra.

Lemma (Pozhidaev, 2001)

Every reduced algebra of an n-ary Mal'tsev algebra is an ($n-1$)-ary Mal'tsev algebra.

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras
(3) n-ary Jordan algebras
- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Let \mathbb{A} be a composition algebra over a field $\mathbb{F}, \operatorname{char}(\mathbb{F}) \neq 2$, with

- an involution $x \mapsto \bar{x}$ and unity 1 ;
- a non-singular, symmetric bilinear form $\langle x, y\rangle=\frac{1}{2}(x \bar{y}+y \bar{x})$;
- a norm defined by the rule $n(a)=\langle a, a\rangle$, for each $a \in \mathbb{A}$.

Theorem (Pozhidaev, 2001)

Let \mathbb{A} be a composition algebra under the above circumstances. Let $M(\mathbb{A})$ be the ternary algebra defined on \mathbb{A} by the multiplication

$$
\begin{equation*}
[x, y, z]=(x \bar{y}) z-\langle y, z\rangle x+\langle x, z\rangle y-\langle x, y\rangle z \tag{5}
\end{equation*}
$$

Then $M(\mathbb{A})$ is a ternary Mal'tsev algebra.

Theorem

Let \mathbb{A} be a composition algebra in the mentioned conditions. If $\operatorname{dim} \mathbb{A} \geq 4$, then $M(\mathbb{A})$ is a central simple ternary Mal'tsev algebra. Moreover, $M(\mathbb{A})$ will be a ternary Filippov algebra only if $\operatorname{dim} \mathbb{A}=4$ or $\operatorname{char}(\mathbb{F})=3$.

Remark

Therefore, if $\operatorname{dim} \mathbb{A}=8$ and $\operatorname{char}(\mathbb{F}) \neq 2,3$, we obtain a ternary Mal'tsev algebra, $M_{8}=M(\mathbb{A})$, which is not a 3-Filippov algebra.

Corollary

If \mathbb{A} is a composition algebra in the above conditions, with no zero divisors, over \mathbb{F} such that $\operatorname{char}(\mathbb{F})=3$, then $M(\mathbb{A})$ is a new central simple 3-Filippov algebra.

Theorem (Saraiva, 2003)

Let $\mathcal{M}=(\mathbb{V},[., .,]$.$) be a ternary Mal'tsev algebra with$ $\operatorname{dim}(\mathbb{V}) \leq 4$ over a field of arbitrary characteristic. Then \mathcal{M} is a ternary Filippov algebra.

Theorem (Saraiva, 2003)

The reduced algebras of the 8-dimensional ternary Mal'tsev algebras $M(\mathbb{A})$ which arise by fixing the elements of an o.n. basis of \mathbb{A} are 7-dimensional simple Mal'tsev algebras.

Remark

Not all reduced algebras of the $M(\mathbb{A})$ are simple. Take the canonical basis of \mathbb{A} :

$$
\mathcal{C}=\{1, a, b, a b, c, a c, b c, a b c\}
$$

and consider $\alpha \in \mathbb{A}$ such that $\alpha^{2}=-1$. Putting $u=1+\alpha a$, then $M(\mathbb{A})_{u}=\left(M(\mathbb{A}),[.,]_{u}\right)$ has nontrivial ideals.

> Theorem (Pozhidaev, 2001)
> Let \mathcal{A} be an arbitrary n-ary vector cross product algebra. Then \mathcal{A} is a central simple n-ary Mal'tsev algebra.

On the derivations of M_{8}

Consider the ternary ternary Mal'tsev algebra $M_{8}=M(\mathbb{A})$, with the canonical basis of \mathbb{A} :

$$
\begin{equation*}
\mathcal{C}=\{1, a, b, a b, c, a c, b c, a b c\} \tag{6}
\end{equation*}
$$

and the ternary multiplication given by (5).
Consider:

- \mathcal{R} : vector space spanned by the right multiplications of M_{8};
- $\operatorname{Ass}(\mathcal{R})$: the associative algebra generated by \mathcal{R};
- Lie (\mathcal{R}) : the Lie algebra generated by \mathcal{R};
- $\operatorname{Der}\left(M_{8}\right)$: the derivation algebra of M_{8};
- Innder $\left(M_{8}\right)$: the innerderivation algebra of M_{8} (i.e., Innder $\left(M_{8}\right)=\left\{D \in \operatorname{Der}\left(M_{8}\right): D \in \operatorname{Lie}(\mathcal{R})\right\}$.

Proposition (Pozhidaev and Saraiva, 2006)

(1) $\operatorname{Ass}(\mathcal{R})=M_{8,8}(\mathbb{F})=\left\langle\mathcal{R}^{2}\right\rangle$
(2) $\operatorname{Lie}(\mathcal{R}) \cong D_{4}$ and $\operatorname{Lie}(\mathcal{R})=\mathcal{R}$ as vector spaces;
(3) $\operatorname{Der}\left(M_{8}\right) \cong B_{3}$.

Recall that:
$D_{4}=\mathfrak{o}(8)=\left\{X \in \mathfrak{g l}(8): X D+D X^{T}=0\right\}, \quad D=\left[\begin{array}{cc}0 & I_{4} \\ I_{4} & 0\end{array}\right], \operatorname{dim}\left(D_{4}\right)=28$
$B_{3}=\mathfrak{o}(7)=\left\{X \in \mathfrak{g l}(7): X B+B X^{T}=0\right\}, B=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & I_{3} \\ 0 & I_{3} & 0\end{array}\right], \operatorname{dim}\left(B_{3}\right)=21$.
Explicit basis for $\operatorname{Der}\left(M_{8}\right)$ can be exhibited.

Theorem (Pozhidaev and Saraiva, 2006)

All derivations of M_{8} are inner.

Theorem (Pozhidaev and Saraiva, 2006)

$$
\operatorname{Der}\left(M_{8}\right)=\left\langle\left[R_{x, y}, R_{x, z}\right]+R_{x,[y, x, z]}: x, y, z \in \mathbb{A}\right\rangle_{\mathbb{F}} .
$$

Theorem (Kaygorodov, 2014)

The simple ternary Mal'tsev algebra M_{8} has no nontrivial 4-ary derivations.

Remark

Indeed, all 4-ary derivations of can be written as a sum of

$$
\left(\sum_{i=1}^{3} \alpha_{i} i d, \alpha_{1} i d, \alpha_{2} i d, \alpha_{3} i d\right) \text { and }\left(D^{*}, D^{*}, D^{*}, D^{*}\right)
$$

where $\alpha_{i} \in \mathbb{F}$ and $D^{*} \in \operatorname{Der}\left(M_{8}\right)$.

On the quasi-derivations of M_{8}

Theorem (Pozhidaev and Saraiva, 2006)

Consider the ternary Mal'tsev algebra M_{8} and put $L=\operatorname{Lie}(\mathcal{R})$.
Then $\mathcal{Q D e r}\left(M_{8}\right)$, the set of quasi-derivations of M_{8} is such that

$$
\mathcal{Q} \operatorname{Der}\left(M_{8}\right)=\langle I d\rangle_{\mathbb{F}} \oplus L
$$

We have: $\operatorname{Der}\left(M_{8}\right) \subset \mathcal{Q} \operatorname{Der}\left(M_{8}\right) \subset \operatorname{End}_{\mathbb{F}}\left(M_{8}\right)$.

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras
(3) n-ary Jordan algebras
- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Definition (Jordan, 1933)

A Jordan algebra is a commutative algebra \mathcal{A} over a field \mathbb{F}, $\operatorname{char}(\mathbb{F}) \neq 2$, such that

$$
(x y) x^{2}=x\left(y x^{2}\right) . \quad(\text { Jordan identity })
$$

- Among the binary generalizations of Jordan algebras we have the so-called noncommutative Jordan algebras: algebras which satisfy (7) and the flexible identity

$$
(x y) x=x(y x)
$$

- Noncommutative Jordan algebras include alternative algebras, Jordan algebras, quasiassociative algebras, quadratic flexible algebras and anticommutative algebras.
- n-ary generalizations of Jordan algebras, are restricted to the ternary case, mostly due to the works of Bremner, Peresi and Hentzel (2000, 2001 and 2007).
- Among these, is the notion of Jordan triple system:

A Jordan triple system (see Bemner and Peresi, 2007; Gnedbaye and Wambst, 2007) is a ternary algebra \mathbb{A} with multiplication $\llbracket ., .$, . satisfying a partial commutativity property

$$
\llbracket x, y, z \rrbracket=\llbracket z, y, x \rrbracket
$$

and the following identity:
$\llbracket \llbracket x, y, z \rrbracket, u, v \rrbracket+\llbracket z, u, \llbracket x, y, v \rrbracket \rrbracket=\llbracket x, y, \llbracket z, u, v \rrbracket \rrbracket+\llbracket z, \llbracket y, x, u \rrbracket, v \rrbracket$.

A different approach

A Lie triple algebra (Osborn, 1969, and Sidorov, 1981) is a commutative, nonassociative algebra \mathcal{A} over a field \mathbb{F} $(\operatorname{char}(\mathbb{F}) \neq 2)$ satisfying

$$
\begin{equation*}
\left(a, b^{2}, c\right)=2 b(a, b, c) \tag{9}
\end{equation*}
$$

where $(a, b, c)=(a b) c-a(b c)$ is the associator.
(9) is equivalent to:

$$
\begin{equation*}
R_{(x, y, z)}=\left[R_{y},\left[R_{x}, R_{z}\right]\right] \tag{10}
\end{equation*}
$$

where $[a, b]=a b-b a$ is the commutator and R_{x} is a right multiplication operator.

- Every Jordan algebra is a Lie triple algebra.
- Simple Lie triple algebras containing an idempotent are Jordan algebras (Osborn, 1965).
- On a commutative algebra, $\mathcal{A},(10)$ is equivalent to

$$
\begin{equation*}
\left[R_{x}, R_{y}\right] \in \operatorname{Der}(\mathcal{A}) \tag{11}
\end{equation*}
$$

- Putting $D_{x, y}:=\left[R_{x}, R_{y}\right]$, this means that

$$
\begin{equation*}
D_{x, y}(a b)=D_{x, y}(a) b+a D_{x, y}(b) \tag{12}
\end{equation*}
$$

- In a Jordan algebra \mathcal{J},

$$
\operatorname{Inder}(\mathcal{J})=\left\{\sum\left[R_{x_{i}}, R_{y_{i}}\right]: x_{i}, y_{i} \in \mathcal{J}\right\},
$$

- Thus, in every Jordan algebra $\mathcal{A}, D_{x, y}$ is a derivation of \mathcal{A} (Faulkner, 1967).

Definition (n-ary Jordan algebra (Saraiva, Pozhidaev and Kaygorodov, 2017))

Let \mathcal{A} be an n-ary algebra with a multilinear multiplication $\llbracket ., \ldots, \rrbracket: \times^{n} \mathbb{V} \rightarrow \mathbb{V}$, where \mathbb{V} is the underlying vector space. \mathcal{A} is said to be an n-ary Jordan algebra if the multiplication is totally commutative and if

$$
\begin{equation*}
\left[R_{\left(x_{2}, \ldots, x_{n}\right)}, R_{\left(y_{2}, \ldots, y_{n}\right)}\right] \in \operatorname{Der}(\mathcal{A}) \tag{13}
\end{equation*}
$$

where [.,.] is the commutator and $R_{\left(x_{2}, \ldots, x_{n}\right)}, R_{\left(y_{2}, \ldots, y_{n}\right)}$ are right multiplication operators:

$$
y \mapsto y R_{\left(x_{2}, \ldots, x_{n}\right)}=\llbracket y, x_{2}, \ldots, x_{n} \rrbracket .
$$

Simplifying notations, (13) assumes the form

$$
\begin{equation*}
D_{x, y}=\left[R_{x}, R_{y}\right] \in \operatorname{Der}(\mathcal{A}),\left(D_{x, y} \text {-identity }\right) \tag{14}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
D_{x, y} \llbracket z_{1}, \ldots, z_{n} \rrbracket=\sum_{i=1}^{n} \llbracket z_{1}, \ldots, D_{x, y}\left(z_{i}\right), \ldots, z_{n} \rrbracket . \tag{15}
\end{equation*}
$$

Non-totally commutative n-ary Jordan algebras are also called $D_{x, y}$-derivation algebras.

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras
(3) n-ary Jordan algebras
- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Consider:

- \mathbb{V} : an n-dimensional vector space over a field \mathbb{F};
- f bilinear, symmetric and nondegenerate form;
- $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$: a basis of \mathbb{V} such that:

$$
f\left(b_{i}, b_{j}\right)=\delta_{i j}
$$

- Define on $\mathbb{F} \oplus \mathbb{V}$ the multiplication $*$ by

$$
(\alpha+u) *(\beta+v)=\alpha \beta+f(u, v)+\alpha v+\beta u, \quad \alpha, \beta \in \mathbb{F}, u, v \in \mathbb{V}
$$

Then we obtain a Jordan algebra of a symmetric bilinear form f, denoted by $J(\mathbb{V}, f)$, which is simple if $\operatorname{dim} \mathbb{V}>1$ and f is nondegenerate.

Question

Is it possible to generalize this example to the ternary case?

The ternary algebra $\mathcal{V}_{f, g, h}$

Given:

- \mathbb{V} : an n-dimensional vector space over a field \mathbb{F};
- f and h : bilinear, symmetric and nondegenerate forms;
- g : trilinear, symmetric and nondegenerate form;
- $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$: a basis of \mathbb{V} such that:

$$
f\left(b_{i}, b_{j}\right)=\delta_{i j}, \quad h\left(b_{i}, b_{j}\right)=\delta_{i j} \quad \text { and } \quad g\left(b_{i}, b_{j}, b_{k}\right)=\delta_{i j k},
$$

- Define the ternary algebra $\mathcal{V}_{f, g, h}:=(\mathbb{F} \oplus \mathbb{V}, \llbracket ., ., . \rrbracket)$ such that:

$$
\llbracket \alpha_{1}+v_{1}, \alpha_{2}+v_{2}, \alpha_{3}+v_{3} \rrbracket=
$$

$=\left(\alpha_{1} \alpha_{2} \alpha_{3}+\alpha_{1} f\left(v_{2}, v_{3}\right)+\alpha_{2} f\left(v_{1}, v_{3}\right)+\alpha_{3} f\left(v_{1}, v_{2}\right)+g\left(v_{1}, v_{2}, v_{3}\right)\right)+$
$+\left(\alpha_{2} \alpha_{3}+h\left(v_{2}, v_{3}\right)\right) v_{1}+\left(\alpha_{1} \alpha_{3}+h\left(v_{1}, v_{3}\right)\right) v_{2}+\left(\alpha_{1} \alpha_{2}+h\left(v_{1}, v_{2}\right)\right) v_{3}$.

The first examples

Theorem (Saraiva, Pozhidaev and Kaygorodov, 2017)

The ternary algebra $\mathcal{V}_{f, g, h}$ is a ternary Jordan algebra if f, g and h are identically zero. In the opposite case, $\mathcal{V}_{f, g, h}$ is not a ternary Jordan algebra with the following exceptions:

- $\mathcal{V}_{0,0, h}$, if $\operatorname{char}(\mathbb{F})=3$ and $\operatorname{dim} \mathbb{V}=1$;
- $\mathcal{V}_{0, g, 0}$, if $\operatorname{char}(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}=1$;
- $\mathcal{V}_{f, 0, h}$, if $\operatorname{char}(\mathbb{F})=2$;
- $\mathcal{V}_{f, g, h}$, if $\operatorname{char}(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}=1$.

Lemma

$\mathcal{V}_{0,0,0}$ is not simple and every subspace of \mathbb{V} is an ideal of $\mathcal{V}_{0,0,0}$. Further, if \mathcal{I} is a proper ideal of $\mathcal{V}_{0,0,0}$, then \mathcal{I} is a subspace of \mathbb{V}. Among the modular ternary Jordan algebras obtained in the previous theorem, only the following are simple:

- $\mathcal{V}_{0, g, 0}$, with $\operatorname{char}(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}=1$;
- $\mathcal{V}_{f, 0, h}$, with $\operatorname{char}(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}>1$.

Lemma

Let D be an arbitrary derivation of $\mathcal{V}_{0,0,0}$, then
(1) if $\operatorname{char}(\mathbb{F}) \neq 2$, then $\operatorname{Der}\left(\mathcal{V}_{0,0,0}\right) \cong \operatorname{End}(\mathbb{V})^{(-)}$;
(2) if char $(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}=1$, then
$\operatorname{Der}\left(\mathcal{V}_{0,0,0}\right) \cong \operatorname{End}\left(\mathcal{V}_{0,0,0}\right)^{(-)}$;
(3) if $\operatorname{char}(\mathbb{F})=2$ and $\operatorname{dim} \mathbb{V}>1$, then
$D(\mathbb{V}) \subseteq \mathbb{V},\left.\operatorname{Der}\right|_{\mathbb{V}}\left(\mathcal{V}_{0,0,0}\right) \cong \operatorname{End}(\mathbb{V})^{(-)}$and $D(1)$ may be an arbitrary element of $\mathcal{V}_{0,0,0}$, where $\left.\operatorname{Der}\right|_{\mathbb{V}}\left(\mathcal{V}_{0,0,0}\right)$ is the algebra of derivations of $\mathcal{V}_{0,0,0}$ restricted to \mathbb{V}.

The simple ternary Jordan algebra \mathbb{A}

Outline

（1）Introduction
－n－ary algebras
－Filippov algebras
（2） n－ary Mal＇tsev algebras
－Building the notion of n－ary Mal＇tsev algebra
－First results
－Ternary Mal＇tsev algebras arising on composition algebras
（3）n－ary Jordan algebras
－Jordan algebras and its generalizations．The notion of n－ary Jordan algebra
－Ternary algebras with a generalized multiplication
－The simple ternary Jordan algebra \mathbb{A}
－Other examples

- Replace h by (., .);
- Restrict $\llbracket \cdot, \cdot, \cdot \rrbracket$ to \mathbb{V} and admit that $\operatorname{char}(\mathbb{F})=0$;

$$
\begin{equation*}
\llbracket x, y, z \rrbracket=(y, z) x+(x, z) y+(x, y) z . \tag{17}
\end{equation*}
$$

- $\mathbb{A}:=(\mathbb{V}, \llbracket \cdot, \cdot, \cdot \rrbracket)$

Theorem

- \mathbb{A} is a ternary Jordan algebra.
- The ternary Jordan algebra \mathbb{A} is simple, except if $\operatorname{dim} \mathbb{V}=2$ and $\operatorname{char}(\mathbb{F})=2$.

Remark

\mathbb{A} is not a Jordan triple system.

Reduced algebras of n-ary Jordan algebras

Theorem

The reduced algebras of the ternary Jordan algebra \mathbb{A} are not Jordan algebras.

Remark

The reduced algebras of Jordan triple systems may not be Jordan algebras.

Remark

The main subclass of n-ary Jordan algebras consists of totally commutative and totally associative n-ary algebras, in which the "reduced property"happens.

The simple ternary Jordan algebra \mathbb{A}

Identites of degree k in \mathbb{A}

An identity satisfied by a ternary algebra is said to be of degree (or level) k, with $k \in \mathbb{N}$, if k is the number of times that the multiplication appears in each term of the identity.

Lemma

All degree 1 identities on \mathbb{A} are a consequence of the total commutativity of (17).

Lemma

All degree 2 identities on \mathbb{A} are a consequence of the total commutativity of (17), by means of a lifting process.

Remark

Lifting: every process which allows to obtain $(k+1)$-degree identities starting form k-degree identities. This include techniques of two types:
(i) embedding - which justifies that

$$
\llbracket \llbracket a, b, c \rrbracket, d, e \rrbracket=\llbracket \llbracket b, a, c \rrbracket, d, e \rrbracket \text { starting from } \llbracket a, b, c \rrbracket=\llbracket b, a, c \rrbracket \text {, }
$$

(ii) replacing an element by a triple - justifying that

$$
\llbracket \llbracket a, b, c \rrbracket, d, e \rrbracket=\llbracket \llbracket a, b, c \rrbracket, e, d \rrbracket \text { starting from } \llbracket a, b, c \rrbracket=\llbracket a, c, b \rrbracket \text {. }
$$

Theorem

$\operatorname{Der}(\mathbb{A})=\operatorname{Inder}(\mathbb{A})=\operatorname{so}(n)$.

Remark

- If a finite dimensional Lie algebra, over a field of characteristic zero has an invertible derivation, then it is a nilpotent algebra (Jacobson, 1955);
- If a finite dimensional Jordan algebra, over a field of characteristic zero has an invertible derivation, then it is a nilpotent algebra (Kaygorodov and Popov, 2016);
- this result doesn't hold for ternary Jordan algebras (a consequence of last theorem): just take the ternary Jordan algebra \mathbb{A} with $\operatorname{dim} \mathbb{V}=4$ and consider the derivation $\sum_{1 \leq i<j \leq 4}\left(e_{i j}-e_{j i}\right)$. There is a simple ternary Jordan algebra with an invertible derivation.

Outline

(1) Introduction

- n-ary algebras
- Filippov algebras
(2) n-ary Mal'tsev algebras
- Building the notion of n-ary Mal'tsev algebra
- First results
- Ternary Mal'tsev algebras arising on composition algebras
(3) n-ary Jordan algebras
- Jordan algebras and its generalizations. The notion of n-ary Jordan algebra
- Ternary algebras with a generalized multiplication
- The simple ternary Jordan algebra \mathbb{A}
- Other examples

Ternary symmetrized matrix algebras

- Consider the following ternary algebras

$$
\mathfrak{A}=\left(M_{n}(\mathbb{F}), \llbracket ., ., . \rrbracket\right),
$$

where $\llbracket ., ., . \rrbracket$ is the anticommutator:
$\llbracket A, B, C \rrbracket=\operatorname{sym}(A B C)=A B C+A C B+B A C+B C A+C A B+C B A$.

- \mathfrak{A} is not a ternary Jordan algebra since

$$
D_{x, y} \llbracket A, B, C \rrbracket=\llbracket D_{x, y}(A), B, C \rrbracket+\llbracket A, D_{x, y}(B), C \rrbracket+\llbracket A, B, D_{x, y}(C) \rrbracket
$$ doesn't hold when $\operatorname{char}(\mathbb{F}) \neq 3, n=3$. Just take:

$$
x=\left(e_{23}, e_{32}\right), y=\left(e_{22}, e_{23}\right), A=e_{12}, B=e_{23}, C=e_{32} .
$$

Ternary symmetrized matrix algebras

Theorem

Given different $i, j \in\{1, \ldots, n\}$ the following 2-dimensional subalgebras of $M_{n}(\mathbb{F})$

$$
\mathfrak{S}_{1}=\left\langle e_{i i}, e_{i j}\right\rangle_{\mathbb{F}} \text { and } \quad \mathfrak{S}_{2}=\left\langle e_{i j}, e_{j i}\right\rangle_{\mathbb{F}}, \quad(i \neq j)
$$

are non-isomorphic ternary Jordan subalgebras of \mathfrak{A}. Further, \mathfrak{S}_{2} is simple.

Ternary algebras defined on the Cayley-Dickson algebras

Recall the Cayley-Dickson doubling process (Schafer, 1954).
Consider:

- \mathcal{A} : a unital algebra over a field $\mathbb{F}, \operatorname{char}(\mathbb{F}) \neq 2$;
- an involution $x \mapsto \bar{x}$: $x+\bar{x}, x \bar{x} \in \mathbb{F}$, for all $x \in \mathcal{A}$;
- Let $a \in \mathbb{F} \backslash\{0\}$ and define a new algebra (\mathcal{A}, a) as follows:
the underlying vector space, $\mathcal{A} \oplus \mathcal{A}$ the addition, $\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$ the scalar multiplication, $c\left(x_{1}, x_{2}\right)=\left(c x_{1}, c x_{2}\right)$ the multiplication

$$
\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}+a y_{2} \overline{x_{2}}, \overline{x_{1}} y_{2}+y_{1} x_{2}\right)
$$

The corresponding involution is given by:

$$
\overline{\left(x_{1}, x_{2}\right)}=\left(\overline{x_{1}},-x_{2}\right) .
$$

Ternary algebras defined on the Cayley－Dickson algebras

Starting with \mathbb{F} such that $\operatorname{char}(\mathbb{F}) \neq 2$ ，we obtain a sequence of 2^{t}－dimensional algebras denoted by \mathcal{U}_{t} ，among which：
$\mathcal{U}_{0}=\mathbb{F}$ ，

$$
\mathcal{U}_{1}=\mathbb{C}(a)=(\mathbb{F}, a)
$$

$$
\mathcal{U}_{2}=\mathbb{H}(a, b)=(\mathbb{C}(a), b),
$$

$$
\mathcal{U}_{3}=\mathbb{O}(a, b, c)=(\mathbb{H}(a, b), c),
$$

generalized complex numbers， the generalized quaternions， the generalized octonions

Define on each $\mathcal{U}_{t}, t=2,3, \ldots$ the ternary multiplication：

$$
\begin{equation*}
\llbracket x, y, z \rrbracket=(x \bar{y}) z \tag{18}
\end{equation*}
$$

and take $\quad \mathcal{D}_{t}=\left(\mathcal{U}_{t}, \llbracket ., ., . \rrbracket\right)$ ．
\mathcal{D}_{t} are not ternary Jordan algebras，since $\llbracket \cdot, \cdot, \cdot \rrbracket$ is not totally commutative．

Ternary algebras defined on the Cayley-Dickson algebras

Theorem

\mathcal{D}_{2} is a simple ternary $D_{x, y}$-derivation algebra.

Theorem

$$
\text { Consider } \quad \mathbb{H}(a, b)=\langle 1\rangle_{\mathbb{F}} \oplus \mathbb{H}(a, b)_{s}
$$

Then $D \in \operatorname{Der}\left(\mathcal{D}_{2}\right)$ iff there exists $\Phi, \Psi \in \operatorname{End}(\mathbb{H}(a, b))$ such that

$$
D=\Phi+\Psi
$$

where $\Phi \in \operatorname{Der}(\mathbb{H}(a, b))$ and $\Psi(x)=x \Psi(1)$, for all $x \in \mathbb{H}(a, b)$ and $\Psi(1) \in \mathbb{H}(a, b)_{s}$.

Lemma

\mathcal{D}_{3} is not a ternary $D_{x, y}$-derivation algebra.

An analog of the TKK-construction for ternary algebras

- Purpose: take the Tits-Kantor-Koecher (TKK) unified construction of the exceptional simple classical Lie algebras by means of a composition algebra and a degree 3 simple Jordan algebra and use an analogue construction to define TJA.
- Let $L=L_{-1} \oplus L_{0} \oplus L_{1}$ be a 3-graded ternary algebra with the product $[x, y, z]$. By definition, we have:

$$
\left[L_{i}, L_{j}, L_{k}\right] \subseteq L_{i+j+k},(\text { modular addition in }\{-1,0,1\})
$$

- Define a ternary operation on $\mathcal{J}:=L_{0}$ by the rule:

$$
\begin{equation*}
\llbracket x, y, z \rrbracket=\mathcal{S}_{x, y, z}\left[\left[\left[u_{-1}, x, u_{1}\right], y, v_{-1}\right], z, v_{1}\right], \tag{19}
\end{equation*}
$$

where $\mathcal{S}_{x, y, z}$ is the symmetrization operator in x, y, z and $u_{i}, v_{i} \in L_{i}, i=-1,1$.

- Consider $L=A_{1}$ be the simple 4-dimensional ternary Filippov algebra over \mathbb{C} with the standard basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ and the multiplication table

$$
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{4}\right]=(-1)^{i} e_{i}
$$

Change this basis in A_{1} to $\left\{a, b, a_{-1}, a_{1}\right\}$, such that

$$
a=\frac{\mathbf{i}}{2} e_{1}, b=\frac{1}{2} e_{2}, a_{-1}=e_{3}-\mathbf{i} e_{4}, a_{1}=e_{3}+\mathbf{i} e_{4}, \text { where } \mathbf{i}^{2}=-1 .
$$

- Then

$$
A_{1}=\left\langle a_{-1}\right\rangle \oplus\langle a, b\rangle \oplus\left\langle a_{1}\right\rangle
$$

is a 3 -grading on A_{1}, with $\mathcal{J}=L_{0}=\langle a, b\rangle$.

- Putting $u_{-1}=v_{-1}=a_{-1}, u_{1}=v_{1}=a_{1}$ in (19), we obtain the following multiplication table in \mathcal{J} :

$$
\begin{equation*}
\llbracket a, a, a \rrbracket=6 b, \llbracket a, a, b \rrbracket=2 a, \llbracket a, b, b \rrbracket=-2 b \text { and } \llbracket b, b, b \rrbracket=-6 a . \tag{20}
\end{equation*}
$$

- Then:

$$
D_{(a, a),(a, b)} \doteq-3 e_{12}+e_{21}, D_{(a, a),(b, b)} \doteq e_{11}-e_{22} \text { and } D_{(a, b),(b, b)} \doteq-e_{12}+3 e_{21}
$$

\doteq : an equality up to a scalar; $e_{i j}$ is the matrix unit in the basis $\{a, b\}$.

- Consider a ternary totally commutative algebra \mathcal{J} over an arbitrary field with the multiplication table (20). Then

$$
D_{x, y} \in\left\langle-3 e_{12}+e_{21}, e_{11}-e_{22},-e_{12}+3 e_{21}\right\rangle
$$

- The $D_{x, y}$-identity holds if and only if $\operatorname{char}(\mathbb{F})=2$.
- It is also possible to define a TJA structure on L_{-1}. Put:

$$
\llbracket x, y, z \rrbracket=\mathcal{S}_{x, y, z}\left[\left[\left[u_{0}, x, u_{1}\right], y, v_{1}\right], z, v_{0}\right],
$$

$u_{i}, v_{i} \in L_{i}, i=0,1, x, y, z \in L_{-1}$. In this case we have

$$
\llbracket a_{-1}, a_{-1}, a_{-1} \rrbracket=a_{-1}
$$

with

$$
a_{-1}=e_{3}-\mathbf{i} e_{4}, u_{0}=\frac{\mathbf{i}}{4} e_{1}, v_{0}=e_{2}, u_{1}=v_{1}=a_{1}=e_{3}+\mathbf{i} e_{4} .
$$

- Every one-dimensional ternary algebra \mathcal{J} is a ternary Jordan algebra, and \mathcal{J} is simple if and only if $\llbracket \mathcal{J}, \mathcal{J}, \mathcal{J} \rrbracket \neq 0$.

¡ Gracias por vuestra atención!

