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Gradings on matrix algebras



Gradings and graded identities

Gradings on algebras
If A is an F -algebra and G is a group, A is G -graded if

A =
⊕
g∈G

Ag and AgAh ⊆ Agh, for g , h ∈ G .

If x ∈ Ag , for some g ∈ G , we say that x is homogeneous of degree g .

Free G -graded algebra

X =
⋃
g∈G

Xg x ∈ Xg , deg(x) = g

F 〈X |G 〉 = F 〈X 〉

Graded identities
A polynomial f (x1, . . . , xn) ∈ F 〈X |G 〉 is a G -graded identity of a

G -graded algebra A, if f (a1, . . . , an) = 0, for any ai ∈ A such that

deg(ai ) = deg(xi ).
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Examples on matrix algebras

2× 2 matrices

If M2(F )0 =

(
F 0

0 F

)
and M2(F )1 =

(
0 F

F 0

)

M2(F ) = M2(F )0 ⊕M2(F )1 is a Z2-grading on M2(F ).

Identities
(1992) Di Vincenzo: Identities follow from [y1, y2] and z1z2z3 − z3z2z1.
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Examples on matrix algebras

n × n matrices
t + 1

|—————–|

If Mn(F )t =



0 · · · 0 F · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · F

F · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · F 0 · · · 0


then Mn(F ) =

⊕
t∈Zn

Mn(F )t is a Zn-grading.

Identities
(1999) Vasilovsky (char(F ) = 0)

(2002) Azevedo (arbitrary infinite field): Identities follow from:

[x1, x2] = 0, deg(x1) = deg(x2) = 0;

x1x2x3 − x3x2x1 = 0, deg(x1) = deg(x3) = − deg(x2).
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Types of Gradings

Elementary gradings

• G a group

• (g1, . . . , gn) ∈ G n

• If g ∈ G , define Rg = span{eij | g−1
i gj = g}

Then Mn(F ) =
⊕

g∈G Rg is a G -grading on Mn(F ) called elementary

grading defined by (g1, . . . , gn).

Theorem
If G is any group, a G -grading of Mn(F ) is elementary if and only if all

matrix units eij are homogeneous.

Fine gradings

A G -grading on A is a fine grading if dimAg ≤ 1, for all g ∈ G .
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Types of Gradings

Pauli gradings (or ε-gradings)
If ε ∈ F is a primitive n-th root of 1, define the n × n matrices over F :

Xa =


εn−1 0 . . . 0 0

0 εn−2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ε 0

0 0 . . . 0 1

 and Xb =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1 0 0 . . . 0


If g = (i , j) ∈ G = Zn ×Zn, let Cg = X i

aX
j
b and denote Rg = spanF{Cg}.

Then R = Mn(F ) =
⊕

g∈G Rg is a G -grading on R.

This grading is called ε-grading or Pauli grading.

5



Gradings on tensor products

Induced gradings

• Let A = ⊕g∈GAg be any G -graded algebra.

• Let B = Mn(F ) =
⊕

g∈G Bg with an elementary grading induced by

(g1, . . . , gn).

• Set

(A⊗ B)g = spanF{a⊗ eij |a ∈ Ah, g
−1
i hgj = g}.

Then A⊗ B is G -graded and such grading is called induced.

6



Gradings on Matrix Algebras

Theorem (Bahturin, Segal and Zaicev)
Let R = Mn(F ) =

⊕
g∈G Rg be a G -graded matrix algebra over F . Then

there exists a decomposition n = kl , a subgroup H ⊆ G of order k2 and a

l-tuple g = (g1, . . . , gl) ∈ G l such that Mn(F ) is isomorphic as a

G -graded algebra to the tensor product Mk(F )⊗Ml(F ) with an induced

G -grading where Mk(F ) is a H-graded algebra with fine H-grading and

Ml(F ) is endowed with an elementary grading determined by g .

Moreover, H decomposes as H ∼= H1 × · · · × Ht , Hi
∼= Zni × Zni and

Mk(F ) is isomorphic to Mn1 (F )⊗ · · · ⊗Mnt (F ) as an H-graded algebra,

where Mni (F ) is an Hi -graded algebra with some εi -grading.
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Identities with elementary gradings

(2002) Bahturin and Drensky: Mn(F ) with elementary grading defined by

(g1, . . . , gn), with gi 6= gj , i 6= j . Char(F ) = 0.

Identities follow from:

[x1, x2] = 0, deg(x1) = deg(x2) = 0;

x1x2x3 − x3x2x1 = 0, deg(x1) = deg(x3) = − deg(x2).

Monomial identities of degree up to 4s2s+2, s = |G0|.

(2013) Diniz: Infinite field of char(F ) = p > 0

(2015, 2016) Centrone, de M., Diniz: Monomial identities follows from

identities of degree up to 2n − 1. Conjucture: monomial identities of

degree up to n.

(2017) Centrone, de M., Diniz: Identities above and monomial identities

of degree up to n (the minimum possible).
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Involutions on matrix algebras



Involutions on matrix algebras

An involution on an F -algebra A is an antiautomorphism of order two,

i.e., a linear isomorphism ∗ : A −→ A satisfying for all a, b ∈ A,

(ab)∗ = b∗a∗ and (a∗)∗ = a.

Examples

Mn(F ) −→ Mn(F )

A 7−→ At

M2n(F ) −→ M2n(F )(
A B

C D

)
7−→

(
Dt −B t

−C t At

)
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Involutions on matrix algebras

Description of involutions on matrix algebras:

Theorem
Let ∗ be an involution on Mn(F ). Then for every X ∈ Mn(F ),

X ∗ = Φ−1X tΦ,

for some non-singular matrix Φ which is either symmetric or

skew-symmetric. Moreover, Φ is uniquely defined by ∗ up to a scalar

factor.
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Identities with involutions on matrix algebras

(2005) Giambruno and Zaicev:

Theorem
Let F be an infinite field, char(F ) 6= 2 and let ∗ be an involution on

Mn(F ). Then

Id(Mn(F ), ∗) = Id(Mn(F ), t) or Id(Mn(F ), ∗) = Id(Mn(F ), s).

The second possibility can occur only if n is even.
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Graded identities with involution

(2016) Haile and Natapov: Identities of Mn(C) with transpose involution

and elemetary G -grading induced by (g1, . . . , gn), where

G = {g1, . . . , gn} follow from:

xi,e − x∗i,e
xi,exj,e − xj,exi,e
(Graph theory technique)

Remark
The identity x1x2x3 − x3x2x1, deg(x1) = deg(x3) = deg(x2)−1 is a

consequence of the identities above.

Free object?
F 〈X | (G , ∗)〉 = F 〈X ∪ X ∗〉.
X =

⋃
g∈G Xg

deg(x∗g ) = deg(xg )−1
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Degree-inverting involutions on matrix algebras

Example
If Mn(F ) is endowed with any elementary grading defined by (g1, . . . , gn),

deg(etij) = deg(eji ) = g−1
j gi = (g−1

i gj)
−1 = deg(eij)

−1

Degree-inverting involution
An involution ∗ on a G -graded algebra A is a degree-inverting involution

if for all g ∈ G , A∗g ⊆ Ag−1 .

Problem
Describe the degree-inverting involutions on Mn(F ).

Remark
Involutions satisfying A∗g ⊆ Ag are called graded involutions and have

been described by Bahturin Shestakov and Zaicev in 2005.

Such description was applied for classifying gradings on simple finite

dimensional Lie and Jordan algebras.
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Elementary grading with involution

Lemma
Let R = Mn(F ) = ⊕g∈GRg with an elementary grading be a matrix

algebra with a degree-inverting involution ∗, then R is isomorphic to

Mn(F ) with an elementary G -grading defined by an n-tuple (g1, . . . , gn)

and with involution X ∗ = Φ−1X tΦ, where

1. n = 2l + m, for some l , m ∈ N, and Φ =

0 Il 0

Il 0 0

0 0 Im

 ,

if ∗ corresponds to a symmetric matrix. Moreover,

1.1 if m = 0, then after a renumbering, g1g
−1
l+1 = · · · = glg

−1
2l , and

g 2
i = g 2

i+l , for all i ∈ {1, . . . , l};
1.2 if l 6= 0 and m 6= 0, then after a renumbering g1g

−1
l+1 = · · · = gkg

−1
2l ,

g 2
1 = g 2

2 = · · · = g 2
2l , and

g1gl+1 = g2gl+2 = · · · = glg2l = g 2
2l+1 = · · · = g 2

m;

1.3 if l = 0, ∗ is the transpose involution and g1, . . . , gm are arbitrary.
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Elementary grading with involution

Lemma
Let R = Mn(F ) = ⊕g∈GRg with an elementary grading be a matrix

algebra with a degree-inverting involution ∗, then R is isomorphic to

Mn(F ) with an elementary G -grading defined by an n-tuple (g1, . . . , gn)

and with involution X ∗ = Φ−1X tΦ, where

2. n = 2l , for some l ∈ N, and Φ =

(
0 Il
−Il 0

)
.

if ∗ corresponds to a skew-symmetric matrix. Moreover, after a

renumbering g1g
−1
l+1 = · · · = glg

−1
2l , and g2

i = g2
i+l , for all

i ∈ {1, . . . , l}.
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ε-grading

Lemma
Let R = Mn(F ), n ≥ 2 with an ε-grading R =

⊕
g∈G Rg . If ∗ is a

degree-inverting involution, then n = 2 and ∗ is given by X ∗ = Φ−1X tΦ,

where Φ is a scalar multiple of one of the matrices I , Xa, Xb or XaXb.
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Degree-inverting involutions on matrix algebras

Theorem
Let R = Mn(F ) = ⊕g∈GRg with a degree-inverting involution ∗. Then R

is isomorphic as a G -graded algebra to the tensor product

R(0) ⊗ R(1) ⊗ · · · ⊗ R(k) of a matrix subalgebra R(0) with elementary

grading and R(1) ⊗ · · · ⊗ R(k) a matrix subalgebra with fine grading.

Suppose further that both these subalgebras are invariant under the

involution ∗. Then n = 2km and

1. R(0) = Mm(F ), with an elementary G -grading defined by an m-tuple

g = (g1, . . . , gm) of elements of G . The involution ∗ acts on Mm(F )

as X ∗ = Φ−1X tΦ, where Φ and the elements g1, . . . , gm are as in

the previous lemmas.

2. R(1) ⊗ · · · ⊗ R(k) is a T = T1 × · · · × Tk -graded algebra and any

R(i) ∼= M2(F ) is Ti
∼= Z2 × Z2-graded algebra. The involution ∗ acts

on R(1) ⊗ · · · ⊗ R(k) as in the previous Lemma.
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Identities with the transpose involution

Theorem
Let Mn(F ) be a matrix algebra over an infinite field, endowed with the

transpose involution and with an elementary G -grading induced by

(g1, . . . , gn) with gi 6= gj for i 6= j . The graded identities of Mn(F ) with

the transpose involution follow from

xi,e − x∗i,e
xi,exj,e − xj,exi,e
Graded monomial identities of degree up to 2n − 1.
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Gradings on tensor products

If A is G -graded and B is H-graded, one can define a G × H-grading on

A⊗ B by:

(A⊗ B)(g ,h) = Ag ⊗ Bh

Example

If Mn(F ) is G -graded, then Mn(E ) ∼= Mn(F )⊗ E is G × Z2-graded.

Problem

Find a basis for the G × Z2-graded identities for A⊗ E from a basis of

G -graded identities of A.
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Tensor products by the Grassmann algebra

Let us consider the sets

• Z = X ′
⋃
Y ′, where

• X ′ =
⋃

g∈G X ′g (even variables) and Y ′ =
⋃

g∈G Y ′g (odd variables)

We work on the free G × Z2- algebra F 〈Z 〉.

For each J ⊆ N, we define

ϕJ : F 〈X 〉 −→ F 〈Z 〉

x
(i)
g 7−→

{
x

(i)
g , if i 6∈ J

y
(i)
g , if i ∈ J

If m is a multilinear monomial in F 〈Z 〉, we can write:

m = m0yσ(i1)m1yσ(i2) · · · yσ(ik )mk , where i1 < i2 < · · · < ik , and define

ζ(m) = (−1)σm.
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Tensor products by the Grassmann algebra

Now for each J ⊆ N, and a multilinear polynomial f in F 〈X |G 〉, we

define

ζJ(f ) = ζ(ϕJ(f )).

Theorem (Di Vincenzo and Nardozza)
Let A be a G -graded algebra and E ⊂ F 〈X |G 〉 be a system of multilinear

generators for IdG (A). Then the set

{ζJ(f ) | f ∈ E, J ⊆ N}

is system of multilinear generators of IdG×Z2 (A⊗ E )
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Color commutative superalgebras

The map β : H × H −→ F× is a skew-symmetric bicharacter of H if

• β(g + h, k) = β(g , k)β(h, k).

• β(g , h) = β(h, g)−1.

Let C =
⊕

h∈H Ch be a graded algebra. If x ∈ Cg and y ∈ Ch, we define

[x , y ]β := xy − β(g , h)yx .

and extend it to C by linearity.

If C satisfies [x , y ]β ≡ 0, we say that C is a color commutative

superalgebra.
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Color commutative superalgebras

Example

1. Let β : Z2 × Z2 −→ F× be defined as β(g , h) = 1, if g = 0 or h = 0

and β(1, 1) = −1.

Then one can simply verify that E satisfies [x , y ]β ≡ 0.

2. Let H = Zn × Zn and let β : H × H −→ F× given by

β((k , l), (r , s)) = εrl−ks .

Then Mn(F ) with the Pauli grading satisfies [x , y ]β ≡ 0, since

XaXb = εXbXa.

E and Mn(F ) are color commutative superalgebras.
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Tensor products by color commutative superalgebras

Problem

If C is an H-graded color commutative superalgebra, find a basis for the

G ×H-graded identities of A⊗C from a basis of G -graded identities of A.

Let us now consider the free algebra F 〈X |G × H〉. Let us denote its

variables by x
(i)
(g ,h), for g ∈ G , h ∈ H and i ∈ N.

For each sequence of elements of H, h = (hi )i∈N, we define a map

ϕh : F 〈X |G 〉 −→ F 〈X |G ×H〉 as the unique homomorphism of G -graded

algebras satisfying ϕh(x
(i)
gi ) = x

(i)
(gi ,hi )

.
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Tensor products by color commutative superalgebras

Let m = x
(iσ(1))

(giσ(1)
hiσ(1)

) · · · x
(iσ(k))

(giσ(k)
hiσ(k)

) be multilinear with i1 < · · · < ik .

If in the free H-graded color commutative superalgebra, we have

x
(i1)
hi1
· · · x (ik )

hik
= λhσx

(iσ(1))

hiσ(1)
· · · x (iσ(k))

hiσ(k)
,

with λhσ ∈ F×, we define ζ(m) = λhσm.

Now for each sequence h = (hi )i∈N, and a multilinear polynomial f in

F 〈X |G 〉, we define

ζh(f ) = ζ(ϕh(f )).

Theorem (Bahturin-Drensky)

The polynomial f (x
(i1)
g1 , . . . , x

(im)
gm ) is a multilinear G -graded identity of A

if and only if ζ(ϕh(f )) is a multilinear G × H-graded identity of A⊗ C .
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Tensor products by color commutative superalgebras

Theorem (Diniz, de Mello)
Let C be an H-graded color commutative superalgebra, generating the

variety of all H-graded color commutative superalgebras and let R be any

G -graded algebra. If E is a system of multilinear generators for IdG (R),

then the set

S = {ζh(f ) | f ∈ E, h ∈ Hn, n ∈ N}

is a system of multilinear generators of IdG×H(R ⊗ C ).

Applications

• G × Z2-graded identities of UT (d1, . . . , dm;E )

• G × H-identities of UTn(F )⊗Mt(F ).

• Generators for central polynomials (Diniz, Fidelis and Mota, 2017).
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