Involutions gradings and identities on matrix algebras

Thiago Castilho de Mello ${ }^{\dagger}$
February 21, 2018
First International Workshop
Non-associative Algebras in Cádiz
\dagger Universidade Federal de São Paulo
Supported by CNPq and Fapesp

Gradings on matrix algebras

Gradings and graded identities

Gradings on algebras

If A is an F-algebra and G is a group, A is G-graded if

$$
A=\bigoplus_{g \in G} A_{g} \quad \text { and } \quad A_{g} A_{h} \subseteq A_{g h}, \quad \text { for } \quad g, h \in G .
$$

If $x \in A_{g}$, for some $g \in G$, we say that x is homogeneous of degree g.

Free G-graded algebra

$$
\begin{gathered}
X=\bigcup_{g \in G} X_{g} \quad x \in X_{g}, \operatorname{deg}(x)=g \\
F\langle X \mid G\rangle=F\langle X\rangle
\end{gathered}
$$

Graded identities

A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X \mid G\rangle$ is a G-graded identity of a G-graded algebra A, if $f\left(a_{1}, \ldots, a_{n}\right)=0$, for any $a_{i} \in A$ such that $\operatorname{deg}\left(a_{i}\right)=\operatorname{deg}\left(x_{i}\right)$.

Examples on matrix algebras

2×2 matrices
If $M_{2}(F)_{0}=\left(\begin{array}{ll}F & 0 \\ 0 & F\end{array}\right) \quad$ and $\quad M_{2}(F)_{1}=\left(\begin{array}{ll}0 & F \\ F & 0\end{array}\right)$
$M_{2}(F)=M_{2}(F)_{0} \oplus M_{2}(F)_{1}$ is a \mathbb{Z}_{2}-grading on $M_{2}(F)$.
Identities
(1992) Di Vincenzo: Identities follow from $\left[y_{1}, y_{2}\right]$ and $z_{1} z_{2} z_{3}-z_{3} z_{2} z_{1}$.

Examples on matrix algebras

$n \times n$ matrices
If $M_{n}(F)_{t}=\left(\begin{array}{cccccc}\mid-1+1 \\ 0 & \cdots & 0 & F & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & F \\ F & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & F & 0 & \cdots & 0\end{array}\right)$
then $M_{n}(F)=\bigoplus_{t \in \mathbb{Z}_{n}} M_{n}(F)_{t}$ is a \mathbb{Z}_{n}-grading.

Identities

(1999) Vasilovsky $(\operatorname{char}(F)=0)$
(2002) Azevedo (arbitrary infinite field): Identities follow from:
$\left[x_{1}, x_{2}\right]=0, \quad \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=0$;
$x_{1} x_{2} x_{3}-x_{3} x_{2} x_{1}=0, \quad \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{3}\right)=-\operatorname{deg}\left(x_{2}\right)$.

Types of Gradings

Elementary gradings

- G a group
- $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$
- If $g \in G$, define $R_{g}=\operatorname{span}\left\{e_{i j} \mid g_{i}^{-1} g_{j}=g\right\}$

Then $M_{n}(F)=\bigoplus_{g \in G} R_{g}$ is a G-grading on $M_{n}(F)$ called elementary grading defined by $\left(g_{1}, \ldots, g_{n}\right)$.

Theorem

If G is any group, a G-grading of $M_{n}(F)$ is elementary if and only if all matrix units $e_{i j}$ are homogeneous.

Fine gradings
A G-grading on A is a fine grading if $\operatorname{dim} A_{g} \leq 1$, for all $g \in G$.

Types of Gradings

Pauli gradings (or ε-gradings)

If $\varepsilon \in F$ is a primitive n-th root of 1 , define the $n \times n$ matrices over F :

$$
X_{a}=\left(\begin{array}{ccccc}
\varepsilon^{n-1} & 0 & \ldots & 0 & 0 \\
0 & \varepsilon^{n-2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & \varepsilon & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right) \quad \text { and } \quad X_{b}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

If $g=(\bar{i}, \bar{j}) \in G=\mathbb{Z}_{n} \times \mathbb{Z}_{n}$, let $C_{g}=X_{a}^{i} X_{b}^{j}$ and denote $R_{g}=\operatorname{span}_{F}\left\{C_{g}\right\}$.
Then $R=M_{n}(F)=\bigoplus_{g \in G} R_{g}$ is a G-grading on R.
This grading is called ε-grading or Pauli grading.

Gradings on tensor products

Induced gradings

- Let $A=\oplus_{g \in G} A_{g}$ be any G-graded algebra.
- Let $B=M_{n}(F)=\bigoplus_{g \in G} B_{g}$ with an elementary grading induced by $\left(g_{1}, \ldots, g_{n}\right)$.
- Set

$$
(A \otimes B)_{g}=\operatorname{span}_{F}\left\{a \otimes e_{i j} \mid a \in A_{h}, g_{i}^{-1} h g_{j}=g\right\}
$$

Then $A \otimes B$ is G-graded and such grading is called induced.

Gradings on Matrix Algebras

Theorem (Bahturin, Segal and Zaicev)
Let $R=M_{n}(F)=\bigoplus_{g \in G} R_{g}$ be a G-graded matrix algebra over F. Then there exists a decomposition $n=k l$, a subgroup $H \subseteq G$ of order k^{2} and a I-tuple $\bar{g}=\left(g_{1}, \ldots, g_{l}\right) \in G^{\prime}$ such that $M_{n}(F)$ is isomorphic as a G-graded algebra to the tensor product $M_{k}(F) \otimes M_{l}(F)$ with an induced G-grading where $M_{k}(F)$ is a H-graded algebra with fine H-grading and $M_{l}(F)$ is endowed with an elementary grading determined by \bar{g}. Moreover, H decomposes as $H \cong H_{1} \times \cdots \times H_{t}, H_{i} \cong \mathbb{Z}_{n_{i}} \times \mathbb{Z}_{n_{i}}$ and $M_{k}(F)$ is isomorphic to $M_{n_{1}}(F) \otimes \cdots \otimes M_{n_{t}}(F)$ as an H-graded algebra, where $M_{n_{i}}(F)$ is an H_{i}-graded algebra with some ε_{i}-grading.

Identities with elementary gradings

(2002) Bahturin and Drensky: $M_{n}(F)$ with elementary grading defined by $\left(g_{1}, \ldots, g_{n}\right)$, with $g_{i} \neq g_{j}, i \neq j$. $\operatorname{Char}(F)=0$.
Identities follow from:
$\left[x_{1}, x_{2}\right]=0, \quad \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=0$;
$x_{1} x_{2} x_{3}-x_{3} x_{2} x_{1}=0, \quad \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{3}\right)=-\operatorname{deg}\left(x_{2}\right)$.
Monomial identities of degree up to $4 s^{2 s+2}, s=\left|G_{0}\right|$.
(2013) Diniz: Infinite field of $\operatorname{char}(F)=p>0$
(2015, 2016) Centrone, de M., Diniz: Monomial identities follows from identities of degree up to $2 n-1$. Conjucture: monomial identities of degree up to n.
(2017) Centrone, de M., Diniz: Identities above and monomial identities of degree up to n (the minimum possible).

Involutions on matrix algebras

Involutions on matrix algebras

An involution on an F-algebra A is an antiautomorphism of order two, i.e., a linear isomorphism * $A \longrightarrow A$ satisfying for all $a, b \in A$,

$$
(a b)^{*}=b^{*} a^{*} \text { and }\left(a^{*}\right)^{*}=a .
$$

Examples

$$
\begin{aligned}
M_{n}(F) & \longrightarrow \\
A & M_{n}(F) \\
& \longmapsto
\end{aligned} A^{t}+\left(\begin{array}{cc}
M_{2 n}(F) \\
M_{2 n}(F) & \longrightarrow \\
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) & \longmapsto
\end{array}\right.
$$

Involutions on matrix algebras

Description of involutions on matrix algebras:

Theorem

Let $*$ be an involution on $M_{n}(F)$. Then for every $X \in M_{n}(F)$,

$$
X^{*}=\Phi^{-1} X^{t} \Phi
$$

for some non-singular matrix Φ which is either symmetric or skew-symmetric. Moreover, Φ is uniquely defined by $*$ up to a scalar factor.

Identities with involutions on matrix algebras

(2005) Giambruno and Zaicev:

Theorem

Let F be an infinite field, char $(F) \neq 2$ and let $*$ be an involution on $M_{n}(F)$. Then

$$
\operatorname{ld}\left(M_{n}(F), *\right)=\operatorname{ld}\left(M_{n}(F), t\right) \text { or } \operatorname{ld}\left(M_{n}(F), *\right)=\operatorname{ld}\left(M_{n}(F), s\right) .
$$

The second possibility can occur only if n is even.

Involutions and gradings on matrix algebras

Graded identities with involution

(2016) Haile and Natapov: Identities of $M_{n}(\mathbb{C})$ with transpose involution and elemetary G-grading induced by $\left(g_{1}, \ldots, g_{n}\right)$, where
$G=\left\{g_{1}, \ldots, g_{n}\right\}$ follow from:
$x_{i, e}-x_{i, e}^{*}$
$x_{i, e} x_{j, e}-x_{j, e} x_{i, e}$
(Graph theory technique)

Remark

The identity $x_{1} x_{2} x_{3}-x_{3} x_{2} x_{1}, \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{3}\right)=\operatorname{deg}\left(x_{2}\right)^{-1}$ is a consequence of the identities above.

Free object?
$F\langle X \mid(G, *)\rangle=F\left\langle X \cup X^{*}\right\rangle$.
$X=\bigcup_{g \in G} X_{g}$
$\operatorname{deg}\left(x_{g}^{*}\right)=\operatorname{deg}\left(x_{g}\right)^{-1}$

Degree-inverting involutions on matrix algebras

Example
If $M_{n}(F)$ is endowed with any elementary grading defined by $\left(g_{1}, \ldots, g_{n}\right)$,

$$
\operatorname{deg}\left(e_{i j}^{t}\right)=\operatorname{deg}\left(e_{j i}\right)=g_{j}^{-1} g_{i}=\left(g_{i}^{-1} g_{j}\right)^{-1}=\operatorname{deg}\left(e_{i j}\right)^{-1}
$$

Degree-inverting involution
An involution * on a G-graded algebra A is a degree-inverting involution if for all $g \in G, A_{g}^{*} \subseteq A_{g^{-1}}$.

Problem

Describe the degree-inverting involutions on $M_{n}(F)$.

Remark

Involutions satisfying $A_{g}^{*} \subseteq A_{g}$ are called graded involutions and have been described by Bahturin Shestakov and Zaicev in 2005.
Such description was applied for classifying gradings on simple finite dimensional Lie and Jordan algebras.

Elementary grading with involution

Lemma

Let $R=M_{n}(F)=\oplus_{g \in G} R_{g}$ with an elementary grading be a matrix algebra with a degree-inverting involution $*$, then R is isomorphic to $M_{n}(F)$ with an elementary G-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ and with involution $X^{*}=\Phi^{-1} X^{t} \Phi$, where

1. $n=2 I+m$, for some $I, m \in \mathbb{N}$, and $\Phi=\left(\begin{array}{ccc}0 & I_{I} & 0 \\ I_{I} & 0 & 0 \\ 0 & 0 & I_{m}\end{array}\right)$,
if $*$ corresponds to a symmetric matrix. Moreover,
1.1 if $m=0$, then after a renumbering, $g_{1} g_{\mid+1}^{-1}=\cdots=g_{\mid} g_{2 l}^{-1}$, and $g_{i}^{2}=g_{i+1}^{2}$, for all $i \in\{1, \ldots, l\}$;
1.2 if $I \neq 0$ and $m \neq 0$, then after a renumbering $g_{1} g_{I+1}^{-1}=\cdots=g_{k} g_{2 l}^{-1}$, $g_{1}^{2}=g_{2}^{2}=\cdots=g_{21}^{2}$, and $g_{1} g_{l+1}=g_{2} g_{\mid+2}=\cdots=g_{\mid g_{2 l}}=g_{2 l+1}^{2}=\cdots=g_{m}^{2} ;$
1.3 if $I=0, *$ is the transpose involution and g_{1}, \ldots, g_{m} are arbitrary.

Elementary grading with involution

Lemma

Let $R=M_{n}(F)=\oplus_{g \in G} R_{g}$ with an elementary grading be a matrix algebra with a degree-inverting involution $*$, then R is isomorphic to $M_{n}(F)$ with an elementary G-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$ and with involution $X^{*}=\Phi^{-1} X^{t} \Phi$, where
2. $n=2 l$, for some $I \in \mathbb{N}$, and $\Phi=\left(\begin{array}{cc}0 & l_{l} \\ -l_{l} & 0\end{array}\right)$.
if $*$ corresponds to a skew-symmetric matrix. Moreover, after a renumbering $g_{1} g_{\mid+1}^{-1}=\cdots=g_{\|} g_{2 l}^{-1}$, and $g_{i}^{2}=g_{i+l}^{2}$, for all $i \in\{1, \ldots, I\}$.

ε-grading

Lemma
Let $R=M_{n}(F), n \geq 2$ with an ε-grading $R=\bigoplus_{g \in G} R_{g}$. If $*$ is a degree-inverting involution, then $n=2$ and $*$ is given by $X^{*}=\Phi^{-1} X^{t} \Phi$, where Φ is a scalar multiple of one of the matrices I, X_{a}, X_{b} or $X_{a} X_{b}$.

Degree-inverting involutions on matrix algebras

Theorem

Let $R=M_{n}(F)=\oplus_{g \in G} R_{g}$ with a degree-inverting involution $*$. Then R is isomorphic as a G-graded algebra to the tensor product $R^{(0)} \otimes R^{(1)} \otimes \cdots \otimes R^{(k)}$ of a matrix subalgebra $R^{(0)}$ with elementary grading and $R^{(1)} \otimes \cdots \otimes R^{(k)}$ a matrix subalgebra with fine grading. Suppose further that both these subalgebras are invariant under the involution $*$. Then $n=2^{k} m$ and

1. $R^{(0)}=M_{m}(F)$, with an elementary G-grading defined by an m-tuple $\bar{g}=\left(g_{1}, \ldots, g_{m}\right)$ of elements of G. The involution $*$ acts on $M_{m}(F)$ as $X^{*}=\Phi^{-1} X^{t} \Phi$, where Φ and the elements g_{1}, \ldots, g_{m} are as in the previous lemmas.
2. $R^{(1)} \otimes \cdots \otimes R^{(k)}$ is a $T=T_{1} \times \cdots \times T_{k}$-graded algebra and any $R^{(i)} \cong M_{2}(F)$ is $T_{i} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded algebra. The involution $*$ acts on $R^{(1)} \otimes \cdots \otimes R^{(k)}$ as in the previous Lemma.

Identities with the transpose involution

Theorem

Let $M_{n}(F)$ be a matrix algebra over an infinite field, endowed with the transpose involution and with an elementary G-grading induced by $\left(g_{1}, \ldots, g_{n}\right)$ with $g_{i} \neq g_{j}$ for $i \neq j$. The graded identities of $M_{n}(F)$ with the transpose involution follow from
$x_{i, e}-x_{i, e}^{*}$
$x_{i, e} x_{j, e}-x_{j, e} x_{i, e}$
Graded monomial identities of degree up to $2 n-1$.

Gradings and graded identities on tensor products

Gradings on tensor products

If A is G-graded and B is H-graded, one can define a $G \times H$-grading on $A \otimes B$ by:

$$
(A \otimes B)_{(g, h)}=A_{g} \otimes B_{h}
$$

Example

If $M_{n}(F)$ is G-graded, then $M_{n}(E) \cong M_{n}(F) \otimes E$ is $G \times \mathbb{Z}_{2}$-graded.

Problem

Find a basis for the $G \times \mathbb{Z}_{2}$-graded identities for $A \otimes E$ from a basis of G-graded identities of A.

Tensor products by the Grassmann algebra

Let us consider the sets

- $Z=X^{\prime} \cup Y^{\prime}$, where
- $X^{\prime}=\bigcup_{g \in G} X_{g}^{\prime}$ (even variables) and $Y^{\prime}=\bigcup_{g \in G} Y_{g}^{\prime}$ (odd variables)

We work on the free $G \times \mathbb{Z}_{2^{-}}$algebra $F\langle Z\rangle$.
For each $J \subseteq \mathbb{N}$, we define

$$
\begin{aligned}
\varphi_{J}: F\langle X\rangle & \longrightarrow \\
x_{g}^{(i)} & \longmapsto \begin{cases}F\langle Z\rangle \\
x_{g}^{(i)}, & \text { if } i \notin J \\
y_{g}^{(i)}, & \text { if } i \in J\end{cases}
\end{aligned}
$$

If m is a multilinear monomial in $F\langle Z\rangle$, we can write:
$m=m_{0} y_{\sigma\left(i_{1}\right)} m_{1} y_{\sigma\left(i_{2}\right)} \cdots y_{\sigma\left(i_{k}\right)} m_{k}$, where $i_{1}<i_{2}<\cdots<i_{k}$, and define

$$
\zeta(m)=(-1)^{\sigma} m .
$$

Tensor products by the Grassmann algebra

Now for each $J \subseteq \mathbb{N}$, and a multilinear polynomial f in $F\langle X \mid G\rangle$, we define

$$
\zeta_{J}(f)=\zeta\left(\varphi_{J}(f)\right) .
$$

Theorem (Di Vincenzo and Nardozza)
Let A be a G-graded algebra and $\mathcal{E} \subset F\langle X \mid G\rangle$ be a system of multilinear generators for $\operatorname{ld}{ }_{G}(A)$. Then the set

$$
\left\{\zeta_{J}(f) \mid f \in \mathcal{E}, J \subseteq \mathbb{N}\right\}
$$

is system of multilinear generators of $\operatorname{ld}_{G \times \mathbb{Z}_{2}}(A \otimes E)$

Color commutative superalgebras

The map $\beta: H \times H \longrightarrow F^{\times}$is a skew-symmetric bicharacter of H if

- $\beta(g+h, k)=\beta(g, k) \beta(h, k)$.
- $\beta(g, h)=\beta(h, g)^{-1}$.

Let $C=\bigoplus_{h \in H} C_{h}$ be a graded algebra. If $x \in C_{g}$ and $y \in C_{h}$, we define

$$
[x, y]_{\beta}:=x y-\beta(g, h) y x .
$$

and extend it to C by linearity.
If C satisfies $[x, y]_{\beta} \equiv 0$, we say that C is a color commutative superalgebra.

Color commutative superalgebras

Example

1. Let $\beta: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \longrightarrow F^{\times}$be defined as $\beta(g, h)=1$, if $g=0$ or $h=0$ and $\beta(1,1)=-1$.
Then one can simply verify that E satisfies $[x, y]_{\beta} \equiv 0$.
2. Let $H=\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ and let $\beta: H \times H \longrightarrow F^{\times}$given by

$$
\beta((k, l),(r, s))=\varepsilon^{r l-k s} .
$$

Then $M_{n}(F)$ with the Pauli grading satisfies $[x, y]_{\beta} \equiv 0$, since

$$
X_{a} X_{b}=\varepsilon X_{b} X_{a}
$$

E and $M_{n}(F)$ are color commutative superalgebras.

Tensor products by color commutative superalgebras

Problem

If C is an H -graded color commutative superalgebra, find a basis for the $G \times H$-graded identities of $A \otimes C$ from a basis of G-graded identities of A.

Let us now consider the free algebra $F\langle X \mid G \times H\rangle$. Let us denote its variables by $x_{(g, h)}^{(i)}$, for $g \in G, h \in H$ and $i \in \mathbb{N}$.
For each sequence of elements of $H, \mathbf{h}=\left(h_{i}\right)_{i \in \mathbb{N}}$, we define a map $\varphi_{\mathbf{h}}: F\langle X \mid G\rangle \longrightarrow F\langle X \mid G \times H\rangle$ as the unique homomorphism of G-graded algebras satisfying $\varphi_{\mathbf{h}}\left(x_{g_{i}}^{(i)}\right)=x_{\left(g_{i}, h_{i}\right)}^{(i)}$.

Tensor products by color commutative superalgebras

Let $m=x_{\left(g_{\sigma(1)}\right.}^{\left(i_{\sigma(1)}\right)} h_{\left.i_{\sigma(1)}\right)} \cdots x_{\left(g_{\sigma(k)}\right)}^{\left(i_{\sigma(k)}\right)}$ inc(k)$)$, be multilinear with $i_{1}<\cdots<i_{k}$.
If in the free H -graded color commutative superalgebra, we have

$$
x_{h_{i_{1}}}^{\left(i_{1}\right)} \cdots x_{h_{i_{k}}}^{\left(i_{k}\right)}=\lambda_{\mathbf{h} \sigma} x_{h_{i_{\sigma(1)}}}^{\left(i_{\sigma(1)}\right)} \cdots x_{h_{i_{\sigma(k)}}}^{\left(i_{(k)}\right)},
$$

with $\lambda_{\mathbf{h} \sigma} \in F^{\times}$, we define $\zeta(m)=\lambda_{\mathbf{h} \sigma} m$.
Now for each sequence $\mathbf{h}=\left(h_{i}\right)_{i \in \mathbb{N}}$, and a multilinear polynomial f in $F\langle X \mid G\rangle$, we define

$$
\zeta_{\mathbf{h}}(f)=\zeta\left(\varphi_{\mathbf{h}}(f)\right) .
$$

Theorem (Bahturin-Drensky)

The polynomial $f\left(x_{g_{1}}^{\left(i_{1}\right)}, \ldots, x_{g_{m}}^{\left(i_{m}\right)}\right)$ is a multilinear G-graded identity of A if and only if $\zeta\left(\varphi_{\mathbf{h}}(f)\right)$ is a multilinear $G \times H$-graded identity of $A \otimes C$.

Tensor products by color commutative superalgebras

Theorem (Diniz, de Mello)
Let C be an H -graded color commutative superalgebra, generating the variety of all H -graded color commutative superalgebras and let R be any G-graded algebra. If \mathcal{E} is a system of multilinear generators for $\operatorname{ld}_{G}(R)$, then the set

$$
S=\left\{\zeta_{\mathbf{h}}(f) \mid f \in \mathcal{E}, \mathbf{h} \in H^{n}, n \in \mathbb{N}\right\}
$$

is a system of multilinear generators of $I d_{G \times H}(R \otimes C)$.

Applications

- $G \times \mathbb{Z}_{2}$-graded identities of $U T\left(d_{1}, \ldots, d_{m} ; E\right)$
- $G \times H$-identities of $U T_{n}(F) \otimes M_{t}(F)$.
- Generators for central polynomials (Diniz, Fidelis and Mota, 2017).

Thanks

