

DEPARTAMENTO DE MATEMÁTICAS

A categorical characterisation of Lie algebras

Xabier García-Martínez

Joint work with Tim Van der Linden

Cádiz, February 21st-24th, 2018

Unión Europea–Fondo Europeo de Desarrollo Regional Ministerio de Economía, industria y Competitividad MTM2016-79661-P Agencia Estatal de Investigación

(LACC)

Definition (Gray, 2012)

Let C be a category with finite limits and zero object. C is locally algebraically cartesian closed ((LACC) for short) if and only if the kernel functor

$$_{B}^{*}: \operatorname{Pt}_{B}(\mathcal{C}) \longrightarrow \mathcal{C}$$

has a right adjoint for all B.

Examples

Groups, Lie algebras and abelian categories.

X. García-Martínez (USC)

Definition

Let \mathbb{K} be a field. A non-associative algebra is a \mathbb{K} -vector space with a linear map

 $A\otimes A\to A.$

We denote the category by $\mathtt{Alg}_{\mathbb{K}}.$

A subvariety of $Alg_{\mathbb{K}}$ is any equationally defined class of algebras, considered as a full subcategory \mathcal{V} of $Alg_{\mathbb{K}}$.

Theorem (Zhevlakov, Slin'ko, Shestakov, Shirshov)

If \mathcal{V} is a variety of algebras over an infinite field \mathbb{K} , all of its laws are of the form $\phi(x_1, \ldots, x_n)$, where ϕ is a non-associative polynomial. Moreover, each of its homogeneous components $\psi(x_{i_1}, \ldots, x_{i_n})$ is also a law.

This means that if

$$(xy)z + x^2$$

is a law of \mathcal{V} , then

$$x(yz) + y(zx) + z(xy) + xy + yx$$

is a law of \mathcal{V} , then

Let \mathcal{V} be a variety of algebras, the free \mathcal{V} -algebra generated by a set $X = \{x, y, z, ...\}$ is the \mathbb{K} -vector space formed by

$$\begin{array}{l} x, y, z, \dots \\ (xx), (xy), (xz), (yz), \dots \\ (x(xx)), ((xx)x), (x(yz)), (y(xz)), \dots \end{array}$$

quotiened by the equations of $\mathcal V$ and multiplication is juxtaposition.

The coproduct in \mathcal{V} of two algebras A and B, is the free algebra generated by A and B where if we find a word formed by just elements from on of them, we substitute by its multiplication.

Points and actions

Let $X, B \in \mathcal{V}$. Consider the split extension

$$B \flat X \longrightarrow B + X \xrightarrow[(1 \ 0)]{\iota_1} B$$

Definition (Bourn-Janelidze, 1998)

An action of *B* on *X* (or a *B*-action) is a morphism $\xi : B \flat X \to X$, satisfying some monadicity properties.

Theorem (Bourn-Janelidze, 1998)

There is an equivalence of categories

 $\mathtt{Pt}_B(\mathcal{V}) \simeq B-\mathtt{Act}(\mathcal{V})$

Let C be a category with finite limits and zero object. C is (LACC) if and only if the kernel functor

$${}^*_B : B\text{-Act} \simeq \operatorname{Pt}_B(\mathcal{V}) \to \mathcal{C}$$

has a right adjoint for all B.

Let \mathcal{V} be a variety of non-associative algebras. It is (LACC) if and only if the cannonical comparison

$$(B\flat X + B\flat Y) \to B\flat (X + Y)$$

is an isomorphism.

The following are equivalent:

- V is algebraic coherent,
 - i. e. the map $(B\flat X + B\flat Y) \rightarrow B\flat (X + Y)$ is surjective.
- There exist $\lambda_1, \ldots, \lambda_8, \mu_1, \ldots, \mu_8 \in \mathbb{K}$ such that

$$z(xy) = \lambda_1(zx)y + \lambda_2(zy)x \cdots \lambda_8 y(xz)$$

(xy)z = $\mu_1(zx)y + \mu_2(zy)x \cdots \mu_8 y(xz)$

are laws of \mathcal{V} .

- For any ideal I, I^2 is also an ideal (i.e. V is a 2-variety).
- \mathcal{V} is an Orzech category of interest.

Nilpotent algebras

Proposition

If \mathcal{V} is (LACC) and x(yz) = 0 is a law in \mathcal{V} , then \mathcal{V} is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since \mathcal{V} is (LACC), the morphism

$$(B\flat X + B\flat Y) \to B\flat (X + Y)$$

is an isomorphism.

The element

$$\mathbf{x}(\mathbf{yb}) \in B\flat(X+Y)$$

comes from zero.

The expression *yb* plays the role of just "one element" in $B\flat(X + Y)$.

Then if x(yb) is zero, or x(yb) = 0 or yb = 0 have to be rules of \mathcal{V} . In both cases, it implies that the algebra is abelian.

The variety of associative algebras is not (LACC).

Proof: Consider again B, X, Y as free algebras on one generator. Assume that we have an isomorphism:

$$(B\flat X + B\flat Y) \to B\flat (X + Y)$$

Then (xb)y and x(by) go to the same element in $B\flat(X + Y)$ but they are different in $(B\flat X + B\flat Y)$.

The variety of Leibniz algebras is not (LACC).

Proof: In the Leibniz case, we have they identities

$$b(xy) = (bx)y + x(by)$$

$$b(xy) = -(xb)y + x(by)$$

Then, we have that (bx)y + (xb)y = 0.

Again, (bx)y + (xb)y is zero in $B\flat(X + Y)$ but it does not need to be in $(B\flat X + B\flat Y)$.

If V is a (LACC) commutative variety of algebras, i. e. xy = yx is a law, then V is abelian.

Theorem

If \mathcal{V} is a (LACC) anticommutative variety of algebras, i. e. xy = -yx is a law, then \mathcal{V} is subvariety of $Lie_{\mathbb{K}}$.

Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2. We need to see if there is any variety such that the map

$$(B\flat X + B\flat Y) \to B\flat (X + Y)$$

is an isomorphism.

$$\begin{aligned} x(by) &= \lambda_1(xb)y + \lambda_2(bx)y + \lambda_3y(xb) + \lambda_4y(bx) \\ &+ \lambda_5(xy)b + \lambda_6(yx)b + \lambda_7b(xy) + \lambda_8b(yx) \end{aligned}$$

$$= \lambda_1(xb)y + \lambda_2(bx)y + \lambda_3y(xb) + \lambda_4y(bx)$$

+ $\lambda_5(\mu_1(bx)y + \mu_2(xb)y + \mu_3y(bx) + \dots + \mu_7x(by) + \mu_8x(yb))$
+ $\lambda_6(\mu_1(by)x + \mu_2(yb)x + \mu_3x(by) + \dots + \mu_7y(bx) + \mu_8y(xb))$
+ $\lambda_7(\lambda_1(bx)y + \lambda_2(xb)y + \lambda_3y(bx) + \dots + \lambda_7x(by) + \lambda_8x(yb))$
+ $\lambda_8(\lambda_1(by)x + \lambda_2(yb)x + \lambda_3x(by) + \dots + \lambda_7y(bx) + \mu_8y(xb))$

After obtaining 128 different polynomials that the coefficients $\lambda_1, \ldots, \lambda_8, \mu_1, \ldots, \mu_8$ have to satisfy, we found using Gröbner basis that there is no possible combination. Therefore,

Theorem

If ${\cal V}$ is a $({\rm LACC})$ variety of non-associative algebras without any law of order 2, then ${\cal V}$ is abelian.

If \mathcal{V} is a proper (LACC) subvariety of $Lie_{\mathbb{K}}$, then it is abelian.

Theorem

If \mathcal{V} is a (LACC) variety of n-algebras, with $n \neq 2$, then it is abelian.

Let $\mathcal V$ be a non-abelian $({\rm LACC})$ variety of non-associative n-algebras. Then, $\mathcal V={\tt Lie}_{\mathbb K}.$

- X. García-Martínez, T. Van der Linden A characterisation of Lie algebras amongst anti-commutative algebras. Preprint, arXiv:1701.05493. 2017.
- X. García-Martínez, T. Van der Linden A characterisation of Lie algebras via algebraic exponentiation. Preprint, arXiv:1711.00689. 2017.