LEIBNIZ ALGEBRAS WHOSE ASSOCIATED LIE ALGEBRA IS A WITT ALGEBRA ${ }^{1}$

Luisa M. Camacho
University of Sevilla, Sevilla
lcamacho@us.es

Leibniz algebra is a non-associative algebra with a bilinear product satisfying the so-called Leibniz identity. Each non-Lie Leibniz algebra L contains a non-trivial ideal (later denoted by I and usually called Leibniz kernel), which is generated by the squares of the elements of the algebra L, i.e. $I=\langle\{[x, x] \mid x \in L\}\rangle$. Moreover, it is easy to see that this ideal belongs to the right annihilator of L, that is $[L, I]=0$. For a Leibniz algebra, L we consider the natural homomorphism φ into the quotient Lie algebra L / I, which is called corresponding Lie algebra to Leibniz algebra L (in some papers it is called liezation of L).

The map $I \times L / I \longrightarrow I$ defined as $(v, \bar{x}) \longrightarrow[v, x], v \in I, x \in L$ endows I with a structure of a right L / I-module (it is well-defined due to I being in a right annihilator) knwon as the hemisemidirect product of L / I with I (see [3]).

Denote by $Q(L)=L / I \oplus I$, then the operation $(-,-)$ defines Leibniz algebra structure on $Q(L)$, where $(\bar{x}+v, \bar{y}+w):=[\bar{x}, \bar{y}]+[v, y]$, that is, $(\bar{x}, \bar{y})=\overline{[x, y]}$, $(v, \bar{x})=[v, x],(\bar{x}, v)=0, \quad(v, w)=0$, with $x, y \in L, v, w \in I$. In fact, this structure of Leibniz algebra is isomorphic to the initial one of L. Therefore, for a given Lie algebra G and a right G-module M, we can construct a Leibniz algebra $L=G \oplus M$ by the above construction.

One of the approaches in the investigation on Leibniz algebras is the description of these algebras such that their corresponding Lie algebras are a given Lie algebra (see [1,2]).

Using the construction of Leibniz algebras described above, we describe in this paper the infinite-dimensional Leibniz algebra associated to the Witt algebra. Let G be the Witt algebra with $\left\{d_{i} \mid i \in \mathbf{Z}\right\}$ a basis. Let $V(\alpha, b)=\{v(n) \mid n \in \mathbb{Z}\}$ be a G-module with the action given by a representation of Witt algebra [9]:

$$
\left[v(n), d_{m}\right]=(\alpha+n+b m) v(n+m), \quad n \in \mathbb{Z}, \alpha, b \in \mathbb{C}, \alpha \neq 0
$$

Then, we construct the Leibniz algebra $L=G \oplus V$ as follows, we assume that the ideal $I=V$ and $L / I=G$. So we have the products

$$
[V, G] \text { defined as above }[G, V]=[V, V]=0 \quad \text { and } \quad[G, G] \subseteq G+V
$$

REFERENCES:

1. Calderón A.J., Camacho L.M., Omirov B.A., Leibniz algebras of Heisenberg type, J. Algebra, 452 (2016), 427-447.

[^0]2. Camacho L.M., Karimjanov I.A., Ladra M., Omirov B.A., Leibniz algebras constructed by representations of General Diamond Lie algebras, Bull. Malays. Math. Sci. Soc. (2017). https://doi.org/10.1007/s40840-017-0541-5
3. Kinyon M.K., Weinstein A., Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces, Amer. J. Math. 123 (2001), 3 525-550.

[^0]: ${ }^{1}$ In collaboration with B.A. Omirov and T. Kurbanbaev

